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1. Definition

Let S be a closed orientable surface. The mapping class group of S is the group
of isotopy (equivalently, homotopy) classes of orientation preserving diffeomor-
phisms (equivalently, homeomorphisms) of S. It is denoted Mod(S) (or sometimes
MCG(S)) to evoke analogies with the classical modular group PSL2(Z), which is
closely related to the mapping class group Mod(T 2) ∼= SL2(Z) of the torus. In
other words

Mod(S) = Diff+(S)/Diff0(S)

is the quotient of the group of orientation preserving diffeomorphisms by the compo-
nent of the identity. More generally, one allows S to have boundary and punctures
(distinguished points) and requires all diffeomorphisms and isotopies to fix these
pointwise.

In part, the beauty and the richness of the subject comes from its pervasiveness
in modern mathematics. Mapping class groups record monodromies of families of
curves in algebraic geometry, classify surface bundles, and hold keys to the under-
standing of symplectic 4-manifolds and hyperbolic 3-manifolds.

2. Early history: Dehn and Nielsen

Max Dehn and his (co)student Jakob Nielsen were the early pioneers in the
study of mapping class groups in the 1920s and 1930s (see [18, 67, 68]). In retro-
spect, their work was nothing short of seminal. Here is a brief description of their
accomplishments.

A Dehn twist is a homeomorphism Ta of S supported on a regular neighborhood
A of a simple closed curve a in S defined as follows. Fix a homeomorphism A ∼=
S1 × [0, 1], and define Ta(z, t) = (ze2πit, t) (and Ta = id outside A). Dehn and
Nielsen showed the following (for simplicity, assume S is closed of genus g > 1):

Dehn proved that a finite number of Dehn twists in nonseparating curves generate
Mod(S). The proof was later greatly simplified by Lickorish [53] (and Humphries
[40] found a minimal generating set consisting of Dehn twists). Dehn points out
the lantern relation among seven Dehn twists on the sphere with four holes. He
also shows that the natural homomorphism Mod(S) → Sp2g(Z) induced by looking
at the action in homology is not injective (the kernel is now known as the Torelli
group of S).

Dehn introduced coordinates on the space of sets of isotopy classes of pairwise
disjoint essential simple closed curves. Start with a maximal such collection P so
that complementary components are spheres with three holes (or pairs of pants)
and for each curve system record the intersection number and the twist with each
curve in P, after minimizing the number of intersection points. Dehn proves the
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statements about the generating set by looking at the action of Mod(S) on the set
of curve systems in these coordinates.

Nielsen, attributing a part of the argument to Dehn, proves that Mod±(S) ∼=
Out(π1(S)), where Mod±(S) is an index 2 extension allowing orientation reversing
homeomorphisms. The hard part is to show that a homotopy equivalence h :
S → S is homotopic to a homeomorphism. The proof runs along the following
lines: Fix a hyperbolic metric on S. This identifies the universal cover S̃ with the
hyperbolic plane H

2. A lift h̃ : H2 → H
2 of h extends to a homeomorphism of the

circle at infinity, and to every closed geodesic α in S one can associate the closed
geodesic h∗(α) obtained by projecting the geodesic line connecting the h̃-images of
the endpoints of a lift of α. Now apply this construction to two disjoint collections
α1, . . . , αk and β1, . . . , βm that cut the surface into polygons, and argue that the
image curves h∗(αi) and h∗(βj) cut the surface in the same combinatorial way.
Using these decompositions of S as a guide, find a homeomorphism homotopic
to h. More topological arguments were given later by Seifert [71] and Mangler
[55]. (Seifert proves the stronger statement that any map f : S → S′ between
closed orientable surfaces with χ(S′) < 0 and with |χ(S)| = | deg(f)||χ(S′)| is
homotopic to a covering map.) For the injectivity of Mod±(S) → Out(π1(S)), one
needs to know that homotopic homeomorphisms are isotopic, which is a theorem
of Baer [3, 4] (for a more modern treatment, see [22]), and the statement that
Mod±(S) ∼= Out(π1(S)) has become known as the Dehn–Nielsen–Baer theorem.

Nielsen analyzed the dynamics of the homeomorphism of the circle at infinity
induced by a lift of a homeomorphism of a hyperbolic surface. He came tantalizingly
close to discovering the classification of mapping classes, due to Thurston in the
late 1970s (for a detailed discussion of Nielsen’s work see [30,63]). It should also be
added that this study was the motivation for Nielsen’s work on fixed point theory.

3. Subsequent years: presentation, cohomology

Dehn and Nielsen never considered the action of Mod(S) on Teichmüller space
T (S). This is the space of hyperbolic (or equivalently complex) structures on
S modulo isotopy. More precisely, it is the space of pairs (g,X) where X is a
hyperbolic surface and g : S → X is an orientation preserving homeomorphism,
with the equivalence (g,X) ∼ (g′, X ′) if there is an isometry F : X → X ′ such that
Fg is isotopic to g′. The homeomorphism g is called a marking.

Teichmüller space was first considered globally by Fricke and Klein [28], who
viewed it as the space of hyperbolic polygons canonically assigned as fundamental
domains to the universal cover of the hyperbolic surface. Teichmüller [73], from the
point of view of complex structures, gave the modern definition of T (S) in terms
of markings from which it is clear that Mod(S) (sometimes called the Teichmüller
modular group) acts, proved that T (S) is topologically an open ball, introduced a
metric (the Teichmüller metric), and showed that any two points are joined by a
unique geodesic. Fenchel and Nielsen [27], from the hyperbolic geometry point of
view, introduced coordinates on T (S) associated to a pair of pants decomposition.
For a modern introduction to Teichmüller theory, see [39] (and its sequel). Fricke
had proved earlier that Teichmüller space is an open ball in [28]; see [49].

For example, if f is a homeomorphism of S and fp is isotopic to the identity
with p prime, then f acts on T (S) as a homeomorphism of order p. So by the
elementary fixed point theory, f fixes a point of T (S). This easily implies that
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f is isotopic to an isometry g of a suitable hyperbolic metric on S; in particular
to a homeomorphism of order p. The same statement holds when p is not prime,
but one has to argue that the fixed point sets in T (S) are contractible (and this
follows from Teichmüller’s work, since the fixed set is convex, or alternatively, the
fixed point set is the Teichmüller space of the quotient orbifold). Fenchel gave this
argument in [25, 26]. Nielsen claimed the result using different methods, but in
some cases his argument was incorrect. The conjecture that any finite subgroup of
Mod(S) fixes a point in T (S) became known as the Nielsen realization problem.

Earle and Eells used Teichmüller space and the theory developed by Ahlfors and
others [1, 2] to prove that the identity component Diff0(S) of the diffeomorphism
group of S is contractible [20, 21]. Briefly, they argue that the map M(S) → T (S)
from the space of complex structures M(S) is a principal Diff0(S)-bundle. Since
both M(S) and T (S) are contractible, the statement follows.

A consequence of the Earle–Eells theorem is that surface bundles S ↪→ E → X
are classified by conjugacy classes of homomorphisms π1(X) → Mod(S). The search
for characteristic classes for such bundles naturally led to an attempt to understand
the cohomology of Mod(S).

A finite presentation of Mod(S) would at least guarantee that H2(Mod(S);Z) is
finitely generated. Besides, investigating whether given groups are finitely gener-
ated or presented was a natural question even much earlier (e.g., Nielsen found a
finite presentation of Aut(Fn)). This was first established by McCool [60] by an ar-
gument later clarified and extended by Culler and Vogtmann [17], whose version we
will now outline. They define Outer space Xn, an analog of the Teichmüller space
for the group Out(Fn). A point of Xn is represented by a marked metric graph with
volume 1. There is a cocompact spine Kn ⊂ Xn which can be represented as the
union of compact contractible subcomplexes (stars of roses), one for every marking
of the wedge of n circles. They prove contractibility of Xn and Kn by carefully
ordering the set of all stars of roses S1, S2, . . . so that Sk ∩ (S1 ∪ S2 ∪ · · · ∪ Sk−1)
is contractible for k > 1. The same proof shows that if α is a fixed conjugacy
class in Fn and one restricts to the stars of roses Si for which α has the minimal
possible length, then this union is also contractible and the stabilizer of α acts on
it cocompactly. Now using the relative version of the Dehn–Nielsen–Baer theorem,
one knows that the mapping class group of a once punctured surface S can be iden-
tified (up to index 2) with the subgroup of Out(π1(S−{p}) that fixes the conjugacy
class corresponding to a loop around p. This argument shows that the mapping
class group of a punctured surface virtually has finite classifying space. (McCool’s
argument constructs essentially the 2-skeleton of the Culler–Vogtmann complex.)

To prove the same fact about mapping class groups of closed surfaces of genus
> 1 (or at least the existence of a finite presentation), one can use the Birman exact
sequence whose proof uses Earle–Eells (see [13]):

1 → π1(S) → Mod(S, p) → Mod(S) → 1.

Ironically, the fact that Mod(S) virtually has a finite classifying space could have
been deduced earlier from the work of Deligne and Mumford [19]. They showed that
the quotient T (S)/Mod(S) (the moduli space of curves) can be compactified to a
projective variety, and in particular it is homeomorphic to a finite simplicial complex
with a subcomplex removed (one has to be careful with the orbifold structure, or
alternatively, do it with a finite index subgroup). This implies that Mod(S) acts
cocompactly on a contractible subset of T (S).
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Dennis Johnson wrote a remarkable sequence of papers on the Torelli groups
[45–48]. Building on the work of Powell [69], he shows that the Torelli group of a
closed (or once punctured) surface of genus ≥ 3 is finitely generated and computes
the abelianization. In genus 2 Torelli group is free of infinite rank [61]. More
recently, the virtual cohomological dimension has been computed and has been
shown that in the top dimension, cohomology has infinite rank [12]. Perhaps the
biggest classical open problem about mapping class groups is whether Torelli groups
(of high genus) are finitely presented.

4. Thurston and beyond

Modern study of mapping class groups began with the work of Thurston in the
1970s. He reintroduced the point of view of hyperbolic geometry and proved a
classification theorem [74] for mapping classes that Nielsen was so close to estab-
lishing. Take a typical mapping class f on a hyperbolic surface S and a simple
closed geodesic α. Let αn be the geodesic homotopic to fn(α). Thurston observes
that the sequence αn (unless periodic) converges (for n → ∞ and also for n → −∞)
to a (measured) lamination Λ±, i.e., a closed subset of S which is a union of pair-
wise disjoint simple geodesics. If f is “typical” (i.e., a pseudo-Anosov mapping
class), the two laminations fill the surface and one finds a “canonical form” for
f—a homeomorphism g isotopic to f so that in the complement of a finite singular
set in suitable coordinates g looks like

(
λ 0
0 λ−1

)
for a certain λ > 1. Combina-

torially, a pseudo-Anosov mapping class can be efficiently represented via a train
track map. In general, Thurston finds a canonical f -invariant curve system on S so
that on each complementary component the first return map is either periodic or
pseudo-Anosov.

Formally, Thurston first compactifies Teichmüller space to a closed ball, with
a point on the boundary represented by a measured lamination, and then uses
Brouwer’s fixed point theorem to find either an f -invariant measured lamination or
an f -invariant hyperbolic structure. For proofs along these lines, see [24] and [16].
A different, more combinatorial and algorithmic argument directly producing train
track maps can be found in [10].

Upon learning of Thurston’s theorem, Bers [9] promptly produced a proof en-
tirely using Teichmüller space and its finer, geometric structure. It is fair to say that
from this point on, the two subjects of mapping class groups and of Teichmüller
theory merged into a single, much richer subject.

More spectacular results quickly followed. Kerckhoff [50] solved the Nielsen real-
ization problem by showing convexity properties of length functions in Teichmüller
space. A strong form of the Tits alternative was established in [15, 59] and a clas-
sification of subgroups by Ivanov in [43].

Hatcher and Thurston constructed an explicit simply connected 2-complex on
which Mod(S) acts freely and from this an explicit presentation can be found [36].
Even though their presentation was complicated, a remarkable feature was that all
relators were supported on a subsurface of genus ≤ 2. Subsequently, the presenta-
tion was substantially simplified by Wajnryb [75] (see also [52]).

In the meantime, there were important developments in Teichmüller theory. Ma-
sur [58] identified the natural augmentation of Teichmüller space by nodal curves
with the metric completion with respect to the Weil–Petersson metric, and showed
that the quotient space by Mod(S) can be identified with the Deligne–Mumford
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compactification of moduli space. Harvey [35], inspired by the work of Borel and
Serre on the cohomology of arithmetic groups, defined a simplicial complex, anal-
ogous to the Bruhat–Tits building, that keeps track of the strata at infinity in the
augmentation. This complex, the curve complex, has become indispensable in the
study of Mod(S). Its vertices are isotopy classes of essential nonperipheral simple
closed curves in S, and a collection bounds a simplex if it can be realized by disjoint
curves.

Harer [31–34] laid the foundations in the study of the homology of mapping class
groups. He computed the virtual cohomological dimension and proved homological
stability, e.g., the kth homology is independent of the genus as long as the genus is
large. A significant topological ingredient in Harer’s work is his proof that the curve
complex is homotopy equivalent to the wedge of spheres of a suitable dimension,
which leads to Harer’s theorem that mapping class groups are virtual duality groups.
Ivanov [41] has simplified and clarified some of Harer’s arguments. For example,
Ivanov [42] showed that the thick part of Teichmüller space is a contractible manifold
with corners and its boundary is homotopy equivalent to the curve complex. For
more details, see the extensive survey [44].

Mumford and Morita defined classes κi ∈ H2i(Mod(S);Z) [64–66], and Miller
[62] and Morita show that the polynomial algebra on the κi’s (now known as Miller–
Mumford–Morita classes) injects in the stable range to H∗(Mod(S);Z). Mumford
conjectured that rationally and stably the cohomology of Mod(S) is the polynomial
algebra on the κi’s. Mumford’s conjecture was proved by Madsen and Weiss [54].

The study of the geometry of mapping class groups began with the seminal
work of Masur and Minsky [56, 57]. Their work starts by showing that the curve
complex, viewed as a metric space, is δ-hyperbolic and that pseudo-Anosov mapping
classes act on it as hyperbolic elements. (The proof of hyperbolicity of the curve
complex has recently been dramatically simplified; see [38].) They go on to estimate
distances in Mod(S) in terms of distances in the curve complexes of S and its
subsurfaces. A way to succinctly phrase their result was given in [11]: Mod(S)
acts with quasi-isometrically embedded orbits on a finite product of δ-hyperbolic
spaces; each of the hyperbolic spaces is quasi-isometric to a tree of curve complexes
of subsurfaces of S. The Masur–Minsky theory led to geometric results about
Mod(S): quasi-isometric rigidity [7], rapid decay property [8], measure rigidity [51],
boundary amenability [29], finiteness of asymptotic dimension [11], the structure of
asymptotic cones [5, 6], bounds on the conjugacy problem [72], and others, and it
also led to a qualitative understanding of the geometry of Teichmüller space [70].

The reader can look at [23] for a recent list of open problems about mapping
class groups. It is a testimony to the rapid development of the field that many of
the problems on this list are now solved; however, many more remain open!

5. The book

The book arose from a graduate course given by the first author. Its goal is to
introduce a motivated reader into this beautiful subject, describe its main results
and examples, and cover the most important techniques.

The book starts by giving on page 1 the definitions of a mapping class group and
of Teichmüller space. The two objects are really on an equal footing throughout
the book.
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Part 1 covers the classical aspects of the subject. It starts with a quick review
of hyperbolic geometry, but the reader is expected to have a working knowledge
of it. It proceeds with basic facts about isotopy of curves to minimal position
and the discussion of the (geometric) intersection number between simple closed
curves. Perhaps the main theorem in this part is that mapping class groups are
generated by finitely many Dehn twists. They give a modern proof of this fact,
by studying the action of Mod(S) on the suitable version of the curve complex
whose vertex stabilizers are mapping class groups of lower complexity, hence finitely
generated by induction. The inductive process uses the Birman exact sequence,
which is explained in detail. They give a similar argument for finite presentation,
by examining the action on the arc complex, whose contractibility they establish
using the Hatcher flow [37]. There are additional sections on lantern and chain
relations, on the Torelli group, and the Johnson homomorphism, on the 84(g − 1)
theorem, the Dehn–Nielsen–Baer theorem, and on the braid groups (the last one
surely inspired by Birman’s monograph [14]).

Part 2 is entirely dedicated to Teichmüller theory. The first section covers the
basics, including the Fenchel–Nielsen coordinates, thus showing T (S) is an open
ball. The second section explains the work of Teichmüller. It is well motivated after
recalling the work of Grötzsch on conformal distortion of maps between rectangles.
The last section is a discussion of moduli space, including Mumford’s compactness
criterion.

Part 3 is on the Nielsen–Thurston classification. They present both the original
Thurston proof and the Bers proof. They also give five different constructions of
pseudo-Anosov mapping classes and discuss their dynamics.

The book displays a beautiful blend of topology, geometry, and analysis involved
in the modern study of mapping class groups. The authors have found the right
balance between too many and too few details. The theorems come with proofs,
with technical parts omitted with references. Speaking from a personal experience
as someone running reading courses, graduate students find the book easy to read
with only occasional places that need a clarification. Many carefully drawn pictures
greatly help the reader understand the arguments.

The book (understandably) does not cover the whole subject; most notably the
Masur–Minsky theory is omitted. However, a student who completes the book
should be ready to start reading current research papers. The book has become
the standard introductory text, and anyone with a research interest in mapping
class groups should have a copy of the book on the shelf.
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101–111.
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