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Traveling wave solutions to PDEs, especially spectral and dynamic stability of non-
linear waves, is the focus of a new Springer book by Kapitula and Promislow. Arnd
Scheel knowingly writes about it in our featured review. Other reviews provide a
reader’s potpourri of topics ranging from mapping class groups to texts on PDEs, math-
ematical physics, numerical methods in finance, and numerical methods in general. You
can also learn about object tracking, 2-D turbulence, and analytic perturbation theory.
Our reviewers again provide their valuable recommendations to help you select what
to read and consult.

Bob O’Malley
Section Editor

bkreview@amath.washington.edu
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Edited by Robert E. O’Malley, Jr.

Featured Review: Spectral and Dynamical Stability of Nonlinear Waves. By Todd
Kapitula and Keith Promislow. Springer, New York, 2013. $79.95. xiv+361 pp., hardcover.
ISBN 978-1-4614-6994-0.

Undergraduate courses on partial differential equations (PDEs) rarely venture be-
yond the idea of inherently linear eigenfunction expansions or separation of variables
techniques. A glimpse into the world of nonlinear PDEs is sometimes offered when
studying special solutions, either explicit or of a particular form. Standing or travel-
ing waves, such as pulses or fronts, can indeed be constructed in many examples using
quite elementary techniques. Beyond direct numerical simulations, looking at simple
one-dimensional setups and focusing on simple solutions of the form u(x− ct) is often
the only route to gain insight into the temporal dynamics. The traveling wave ansatz
is commonly known as the “ODE reduction,” since it reduces the PDE to an ordinary
differential equation (ODE) for which one then looks for bounded solutions, in particu-
lar, periodic, homoclinic, or heteroclinic orbits. The method is particularly successful
if one can reduce the ODE to a planar system, where the Poincaré–Bendixson theo-
rem helps to classify bounded orbits. Famous examples of such special traveling-wave
solutions arise as solitary waves in dispersive equations, such as water wave problems
or equations in nonlinear optics, or as pulses and fronts in reaction-diffusion-type
systems. From the perspective of this book, one might mention solitary waves

u(t, x) =
c

2
sech2

(√
c

2
(x − ct)

)

in the KdV equation

∂tu = −∂xxxu− 6u∂xu

and excitation pulses (u, v)(x − c∗t), c∗ =
√
2(12 − a) + O(ε) > 0, in the FitzHugh–

Nagumo system

∂tu = ∂xxu+ u(1− u)(u− a)− v,

∂tv = ε(u− γv).

The first and quite relevant objection to the traveling-wave reduction approach is that
such solutions correspond to very particular initial conditions, so they are almost never
observed in experiments or simulations. The present book can be viewed in many ways
as the natural response to this objection. In short, traveling waves are relevant and
informative when open sets of initial conditions stay close to a traveling wave for long

Publishers are invited to send books for review to Book Reviews Editor, SIAM, 3600 Market St.,
6th Floor, Philadelphia, PA 19104-2688.
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time intervals. Such information can be obtained by studying the linearization at a
traveling-wave solution, in particular spectral properties. This book by Kapitula and
Promislow provides a quite unique entry point into this area, suitable for graduate
students and young researchers who are interested in entering the field.

The question of the relevance of traveling waves has a counterpart: why should
one be at all surprised to see traveling waves, or, more generally, coherent behav-
ior? In damped-driven systems, this question can be rephrased from a higher vantage
point as a search for the emergence of self-organized behavior in far-from-equilibrium
systems. Striking examples of such self-organized behavior are, for instance, spiral
waves in chemical reactions. In conservative, Hamiltonian systems, Poincaré’s recur-
rence theorem excludes asymptotic stability. Linearized or spectral stability still give
good indications of stability when one can establish Nekhoroshev-type estimates, thus
guaranteeing that solutions stay close to the equilibrium for exponentially long time
spans. Stronger stability results exploit energetic stability or constrained stability.
A different route, not taken here, would rely on dispersive estimates to show even
stronger, asymptotic stability [10].

Many of the ideas around spectral, linear, and nonlinear stability became accessi-
ble to a larger audience through Dan Henry’s lecture notes [8]. Inspired by dynamical
systems ideas, spectral properties are viewed as universal criteria, independent of
coordinate changes, when the goal is to characterize dynamics in the vicinity of equi-
libria. Henry’s book is also one of the first references to consider characterizations of
spectral properties of the linearization of traveling waves and, using center manifolds,
the nonlinear stability of traveling waves. In fact, both spectral properties and non-
linear stability are complicated by the fact that traveling-wave problems are typically
posed on the whole real line. The loss of compactness is reflected in the presence of
essential spectra that need to be controlled and understood. The translation symme-
try on the real line causes the presence of a neutral eigenvalue at the origin, so that
the linear evolution does not cause exponential decay, but merely exponential decay
to a constant.

The authors discuss both of these aspects carefully in Chapters 3 and 4 after
setting up some basic preliminaries and notation from functional analysis in Chapter
2, which also includes a nice review of Sturm–Liouville theory. Chapter 3 contains,
in particular, a characterization of essential spectra for operators with asymptotically
constant coefficients (homoclinic and heteroclinic traveling waves) and for operators
with periodic coefficients (periodic wave trains). It also explains in an informal way
the effect of domain truncation, following [11], a phenomenon that is revisited in
Chapter 10.

Chapter 5 covers orbital stability in Hamiltonian PDEs, motivated largely by the
work of Grillakis, Shatah, and Strauss [6, 7]. In the absence of effective dissipation
mechanisms, one can strive to show stability using the conservation of the Hamil-
tonian. In fact, if an equilibrium is a strict minimum of the Hamiltonian, nearby
trajectories necessarily stay in a neighborhood, which roughly establishes Lyapunov
stability of the equilibrium. In the case of traveling waves for Hamiltonian PDEs,
equilibria come in families due to translation symmetry. Also, equilibria are typically
not minimizers of the energy. On the other hand, translation symmetry corresponds
to another conserved quantity by Noether’s theorem, the momentum. It is therefore
sufficient to show that the Hamiltonian possesses a strict minimum when restricted
to a level set of the momentum. Such ideas can lead to proofs of stability of traveling
waves in some contexts and, more generally, to counting arguments for unstable eigen-
values of the linearization. Both aspects are carefully covered in Chapters 5 and 7,
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although the most general result, the Hamiltonian Krein index theorem, is stated but
not proved in full generality. Chapter 7 also contains a very interesting collection of
perturbation results, covering, for instance, symmetry-breaking effects and dissipative
perturbations. Chapter 6 develops classical perturbation theory for eigenvalues in the
point spectrum, a necessary prerequisite for various results in subsequent chapters.

Chapters 8 through 10 are concerned with the Evans function, which was intro-
duced in the 1970s in a series of articles to study the stability of pulses in nerve axons
[2, 3, 4, 5]. It gained traction later when it was used to prove stability of the FitzHugh–
Nagumo pulse [9] and the KdV soliton [10]. The paper by Alexander, Gardner, and
Jones [1] today is viewed as the basic (and first) reference for properties of the Evans
function. While the Evans function is widely used, in hyperbolic conservation laws,
nonlinear optics, water wave models, and in reaction-diffusion systems, there are few
expository articles, let alone textbooks, from which beginning graduate students can
learn the subject. In this respect, Chapters 8 through 10 are a very valuable asset for
the community. The construction here is slightly more hands-on and explicit than in
other review articles. Instead of relying on differential forms as in [1], the authors use
specific Jost solutions to build the Wronskian for the Evans function.

Roughly speaking, the Evans function gives a reduction of an eigenvalue problem
of the form Lu = λu, with L a kth-order differential operator on the real line or a
bounded interval, to an analytic function E(λ), so that roots of E coincide with eigen-
values of L. The construction writes the eigenvalue problem as a first-order differential
equation and uses the linear evolution of this differential equation to transport bound-
ary conditions to the origin x = 0 as linear subspaces. One then tracks intersections
of these subspaces by forming a determinant of basis vectors in these subspaces.

While a reduction of an eigenvalue problem to finding the roots of a single analytic
function is obviously beautiful and striking, it is only the fact that this function (or
at least some properties) is computable that turns the Evans function into a powerful
tool in the study of stability of nonlinear waves. The authors illustrate this nicely,
relying mostly on explicitly solvable scattering problems.

Another strength of the Evans function (and this book) is the possibility of track-
ing eigenvalues when they disappear into the essential spectrum. The simplest exam-
ple is that of small localized potentials in Schrödinger operators,

d2u

dx2
+ εV (x)u = λu, V (x)eη|x| → 0 for |x| → ∞,

for some η > 0. The Evans function turns out to be an analytic function of γ =
√
λ

for all ε %= 0 and all &γ > −η. For ε = 0, the Evans function E(γ) = 2γ possesses a
simple root at the origin. A perturbation calculation gives

E(λ) = 2γ − ε

∫
V +O(ε2).

The eigenvalue λ ∼ (ε
∫
V/2)2 turns into a resonance pole when ε

∫
V < 0, with

corresponding eigenfunction u ∼ e|γx|. The book spends quite some time on carefully
introducing the Riemann surface branch cuts more generally and provides us with
more explicit, integrable examples. One of the highlights of the book is Chapter 10.4,
where those results are applied to a perturbation calculation for eigenvalues located
at the edges of the essential spectrum in integrable systems.

A somewhat simpler application of the Evans function is that of parity indices.
Computing the sign of the Evans function for small λ > 0 and for 0 < λ → ∞, one
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can deduce the parity of the number of positive eigenvalues. This has been exploited
in numerous contexts to give instability criteria [12, section 6], but also to show
stability [9]. Key to these results is the connection between the Evans function and
its derivatives at λ = 0 and the geometry of stable and unstable manifolds in the
construction of traveling waves. In the simplest case, the derivative of the Evans
function is given by a Melnikov integral that measures the splitting distance between
stable and unstable manifolds as the wave speed is varied as a parameter in the
traveling-wave ODE.

The authors also consider the truncation problem, when pulses or fronts are con-
sidered on a large but finite interval in a comoving frame with suitable separated
boundary conditions [11]. Spectra converge exponentially as the domain size increases,
and the authors give a constructive proof based on exponential convergence of Jost
solutions and Evans functions. An indirect argument is used to show a clustering re-
sult for eigenvalues at the absolute spectrum. Although this result is slightly weaker
than the original convergence result in [11], it serves as an excellent stepping stone
for those interested in diving deeper into the theory.

Overall, I found this book to be an extremely valuable asset for students and
young researchers who want to get into this field. One can find endless lists of topics
that should have been covered in such a book. Numerous prerequisites from functional
analysis and classical PDE theory are covered only tangentially. Similarly, results from
and connections with inverse scattering theory are only touched upon. However, it
is a strength of the book that it has narrowed the scope. As is, the book does an
excellent job at stimulating readers to get their hands dirty and play around with
the examples offered. The book is, surprisingly, largely self-contained, and it proves
most of the key results rigorously, sometimes restricting to the simplest case. An
extensive bibliography and plenty of remarks at chapter endings then serve as a guide
to history and current literature. This field has needed such a book as an entry point
for graduate students, and the authors deserve a huge thanks from the community
for putting it together.
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ARND SCHEEL

University of Minnesota

Mathematical Foundations of Imaging,
Tomography and Wavefield Inversion. By
Anthony J. Devaney. Cambridge University Press,
Cambridge, UK, 2012. $82.00. xviii+518 pp.,
hardcover. ISBN 978-0-521-11974-0.

Inverse problems and, in particular, imag-
ing problems are a staple of applied mathe-
matics, engineering, and physics, and many
scientists earn their bread and butter ad-
dressing issues of medical imaging, sonar/
radar-based remote sensing, nondestructive
testing and evaluation, etc.. Since these ap-
plied problems are all grounded in wavefield
inversion methods, it might be expected
that a common interdisciplinary text ap-
propriate to all students would have ap-
peared long ago. But—perhaps because of
the considerable prerequisite training re-
quired to understand the physics of radia-
tion and scattering, the issues of ill-posed
problems and regularization methods asso-
ciated with the solution of integral equa-
tions, and the practical problems of con-
structing reliable computer algorithms—it
has been hard to strike that Goldilocks bal-
ance between “too much of this” and “too
little of that.” The more common result
is a book written for a smaller audience
consisting of mathematicians or physicists
or engineers. Tony Devaney has now pro-
duced just such an interdisciplinary book
addressed to all audiences.

Of course, this task requires both physics
and mathematics preliminaries, and De-
vaney starts by introducing the fundamen-
tal tools for dealing with initial and bound-
ary value problems for the scalar wave and
Helmholtz equations. Roughly constituting
the first one-third of the book, he includes
a review of the the Sturm–Liouville prob-
lem, multipole expansions, radiation fields,
dispersive media, and other preliminary
concepts in both the time and frequency
domains (this alone could be a valuable,
if succinct, reference). Throughout he also

includes an extensive discussion of Green
functions for the radiation problem, and
this consolidated exposition is a wellspring
for the uninitiated student. Devaney has
staged these basic results up-front so that
they can be referenced when needed later
in the text and, owing to the interdis-
ciplinary nature of the book, the layout
makes good sense. While so much uninter-
rupted background material (four chapters)
concentrated in one place might dishearten
a student who is anxious to “get on with
imaging,” the formal feel of these chapters
is significantly lessened by the inclusion of
very informative examples—many of which
anticipate later results. To complement
this necessarily compressed background
overview, each chapter includes thought-
fully crafted exercises to amplify the main
points of the exposition.

Chapter 5 begins the text’s subject in
earnest with the inverse source problem
(ISP). After developing the ISP integral
equation, Devaney proceeds systematically
to discuss solutions for a number of impor-
tant sources and geometries. Along the way
he introduces singular value decomposition
(SVD) methods and discusses their imple-
mentation. Mindful to discuss the conse-
quences of nonideal data, this chapter pro-
vides a wealth of valuable information, and
I was especially glad to see the SVD-based
exposition both here and continued through
the remainder of the book (something that
is not as common as it should be in such
texts).

Chapter 6 is preliminary to the inverse
scattering problem (ISCP) and introduces
scattering and diffraction. After developing
the Lippmann–Schwinger integral equation
and discussing various general properties
of the scattered field, Devaney moves on to
the various schemes for approximating so-
lutions (Born, Rytov, physical optics, etc.)
and the inversion techniques based on these
approximations in Chapters 7 and 8. Here,
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as before, his approach is to illustrate ISCP
methods by examining specific problems
involving data constraints and scattering
geometries.

The final three chapters deal with some of
the odds and ends that have been deferred to
this point so as to more expediently develop
the main themes of the book. Chapters 9
and 10 address the very important problem
of wavefield inversion in inhomogeneousme-
dia, while Chapter 11 addresses the vector
Helmholtz equation associated with electro-
magnetic fields (a topic too often brushed
aside in standard imaging texts). Starting
with an overview of the Maxwell equations,
Devaney develops electromagnetic radiation
and scattering in an amazingly concise tour
de force that describes the similarities as
well as the differences between scalar and
electromagnetic waves.

This is the kind of remarkable and com-
prehensive book that I would expect to be
penned by one of the foremost experts in
the field and Prof. Devaney is to be con-
gratulated. As a reference source this book
is certain to prove its value. As a text,
however, the book (in its entirety) might be
a bit challenging for a one-semester intro-
ductory graduate-level course offered to stu-
dents who really do have only “rudimentary
familiarity with the wave and Helmholtz
equations in a homogeneous medium.” The
reason, of course, is the sheer amount of ma-
terial covered—the book intends to “present
the mathematical (and physical) founda-
tions of imaging,” and that is a tall order.
A preliminary course in Fourier optics could
help ease the passage into these more ad-
vanced topics. However, the book’s expo-
sition allows it to be tailored to a course
with more modest goals. Other than that,
I believe the author has found a marvelous
balance between physics and mathematics,
and, even though he laments that this was
accomplished “at the expense of mathemat-
ical rigor,” I think he got it just right.

BRETT BORDEN

Naval Postgraduate School

A Primer on Mapping Class Groups.
By Benson Farb and Dan Margalit. Prince-
ton University Press, Princeton, NJ, 2012.

$75.00. xiv+472 pp., hardcover. ISBN 978-
0-691-14794-9.

The classification of surfaces (or, more for-
mally, of closed two-dimensional manifolds)
has been known since the 1860s and de-
scribes how they are all obtained from
spheres by adding finitely many handles
or crosscaps. Restricting to oriented sur-
faces gives an even simpler picture: sur-
faces are classified by a single integer—the
genus—which can be any nonnegative in-
teger; this integer can be computed easily
from any combinatorial description of the
surface (e.g., from the Euler characteris-
tic χ, which is related to the genus g by
the formula χ = 2 − 2g). Thus, a closed
oriented surface of genus 0 is a sphere, a
closed oriented surface of genus 1 is a torus,
and so on. However, as is so often the case
in mathematics, the real interest lies not so
much in the objects themselves, but in their
groups of symmetries.

If S is a closed, oriented surface, the
group Homeo+(S) of orientation-preserving
self-homeomorphisms is extremely compli-
cated as an abstract group. However, it
may be topologized in an obvious way (i.e.,
with the compact-open topology) by how it
acts on S, and then as a space it becomes
much more manageable (at least up to ho-
motopy). If we denote by Homeo0(S) the
connected component of Homeo+(S) con-
taining the identity, then the situation is as
follows:

1. The group SO(3,R) of rotations of
Euclidean 3-space acts by isometries
on the round sphere S2 and defines
an inclusion SO(3,R) → Homeo0(S

2),
which is a homotopy equivalence.

2. The square torus R2/Z2 acts on itself
by translations and defines an inclu-
sion R2/Z2 → Homeo0(T ) which is a
homotopy equivalence.

3. For S a surface of genus at least 2,
Homeo0(S) is contractible.

One can already see from this a fundamen-
tal distinction in the study of surfaces: the
case of genus 0 and 1 is exceptional, whereas
all surfaces of genus at least 2 exhibit simi-
lar phenomena (for surfaces with punctures
or boundary components there is a similar
distinction, but in this case what is im-

D
ow

nl
oa

de
d 

11
/0

2/
14

 to
 1

28
.1

35
.1

2.
12

7.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOOK REVIEWS 555

portant is not the genus, but the sign of
the Euler characteristic). Because the ac-
tion of Homeo+(S) on itself is continuous,
the group Homeo0(S) is a normal subgroup
of Homeo+(S), and the quotient Mod(S) is
called themapping class group. Thus—for a
surface S of genus at least 2—understanding
the group Homeo+(S) up to homotopy is
tantamount to understanding the mapping
class group of S.

Surfaces and their symmetries are ubiqui-
tous throughout geometry and, even more
broadly, throughout mathematics. In the
first place, surfaces arise as Riemann sur-
faces and therefore can be found wherever
one finds the complex numbers (which is to
say, everywhere). Moreover, surfaces fre-
quently arise in families, and the global
study of these families is governed by map-
ping class groups. For example, a meromor-
phic function on a complex surface (which
is topologically four-dimensional) has fibers
which are (possibly singular) Riemann sur-
faces, and the monodromy of the nonsin-
gular fibers is a subgroup of a mapping
class group. More generally, any symplec-
tic 4-manifold admits the structure of a
Lefschetz pencil, whose nonsingular fibers
are surfaces, and these can also be studied
bymapping class groups. Many 3-manifolds
have the structure of a surface bundle over a
circle, so that they are described exactly up
to homeomorphism by giving a single con-
jugacy class in some mapping class group.
The dynamics of flows on 3-manifolds is cap-
tured by return maps to a two-dimensional
cross-section, and many important features
of flows are encoded in the relative braiding
of orbits around each other; such braiding is
parameterized by elements of braid groups,
which are mapping class groups for certain
punctured surfaces. So the importance of
the theory of mapping class groups to many
different mathematical constituencies is be-
yond question. What has been sorely miss-
ing is a clear, readable introduction to the
subject that lays out the basic facts with a
minimum of fuss and with an eye to their
applications—in short, a primer.

The view of surfaces as geometric objects
has a lot to recommend it, and one of the
canonical routes to the understanding of
mapping class groups is through the study
of geometric structures on surfaces, espe-

cially holomorphic structures, and Rieman-
nian metrics. Every surface admits a canon-
ical smooth structure, and every smooth
manifold admits a Riemannian metric. For
an oriented surface, any conformal class
of Riemannian metric determines a unique
compatible holomorphic structure (i.e., a
realization as a Riemann surface) and, fur-
thermore, every conformal class of metric
contains a unique representative of constant
curvature −1, 0, or 1 up to the ambiguity of
scale in the case of curvature 0; this is more
or less a restatement of the Riemann map-
ping theorem. The sign of the curvature is
the same as the sign of the Euler charac-
teristic χ, and the distinction between phe-
nomena associated with surfaces of genus at
least 2 and surfaces of genus 0 or 1 can be
explained by geometry. Thus one is quickly
led to study the moduli space of metrics on
S of constant curvature −1 (at least when
the genus of S is bigger than 1). Here one
obtains one of the most fruitful interpreta-
tions of mapping class groups: as (orbifold)
fundamental groups of moduli spaces.

The geometry and topology of moduli
spaces and their compactifications is very
beautiful, but also very complicated, so it is
natural to look for simpler spaces that cap-
ture some of the information, but are easier
to study directly. Associated to a Riemann
surface in a natural way (taking the quo-
tient of H1(S;R)∗ by the period lattice)
is a certain kind of high-dimensional torus
called a Jacobian. Families of Riemann sur-
faces give rise to families of Jacobians, and
Jacobians are examples of what are called
principally polarized abelian varieties, which
have their own moduli space; this is much
easier to understand than the moduli space
of a surface. For example, the moduli space
of principally polarized abelian varieties has
(orbifold) fundamental group equal to the
symplectic group Sp(2g;Z), where g is the
genus, so we obtain a natural “forgetful”
map Mod(S) → Sp(2g;Z). This map be-
tween groups may be seen more easily just
by thinking about the action of a mapping
class on the one-dimensional cohomology
H1(S;Z), which is naturally made into a
lattice in a symplectic vector space by the
cup product. Thus we can achieve insight
into the algebraic structure of the mapping
class group by studying both the symplec-
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tic group Sp(2g;Z) and the kernel of the
map Mod(S) → Sp(2g;Z), which is called
the Torelli group Ig . This latter group is
very mysterious, but some of its structure
is revealed by studying its homomorphisms
to abelian groups, following the approach
of Dennis Johnson.

Finally, a concern somewhat complemen-
tary to the study of mapping class groups
themselves is the problem of finding a rep-
resentative self-homeomorphism that is the
best avatar of its mapping class or has
properties that make it especially useful
for applications or computation. Here one
has the Nielsen–Thurston classification the-
orem, which says that each mapping class
has a representative φ which is of one of the
following types:

1. φ is finite order—i.e., φm = id for some
positive m;

2. φ is reducible—i.e., it leaves invariant
a finite collection of pairwise disjoint
essential simple closed curves in S; or

3. φ is pseudo-Anosov.

Finite-order automorphisms are very easy
to understand. Reducible automorphisms
restrict to automorphisms of simpler sur-
faces with boundary (obtained by cut-
ting along the invariant system of curves).
Therefore, the interesting automorphisms
are those which have pseudo-Anosov rep-
resentatives. The simplest way to define a
pseudo-Anosov homeomorphism is to say
that in local charts it looks like an affine
map of the plane which stretches one axis
by some factor λ > 1 and the other axis by
a complementary factor 1/λ, except that
there are finitely many points where the dy-
namics looks more like a “branched cover”
of such an affine map, of degree n/2 for
some integer n ≥ 3. A more rigorous defi-
nition is to say that there is a holomorphic
quadratic differential ω on the underlying
Riemann surface that defines singular foli-
ations tangent to the directions in which a
square root

√
ω is real or imaginary, and

that φ stretches the leaves of the real folia-
tion by λ and the leaves of the imaginary fo-
liation by 1/λ (the singularities correspond
to the zeros of ω). Pseudo-Anosov repre-
sentatives are very nice to work with for
many reasons; for instance, they admit nice
Markov partitions, and they have the sim-

plest dynamics (as measured by entropy) of
any representative of their mapping class.

The book of Farb and Margalit does an
awesome job of covering all these different
perspectives (and much more) and explain-
ing the basic phenomena, examples, and ap-
plications clearly, unambiguously, and ac-
cessibly. The book is divided into three
sections; we briefly discuss the contents of
each section.

The first section is concerned with the
algebraic structure of mapping class groups
and their relation to the combinatorial
topology of two-dimensional surfaces. The
most important results in this section
are the Dehn–Nielsen–Baer theorem that
Mod(S) is isomorphic to the outer auto-
morphism group of π1(S) (up to Z/2Z
parameterizing orientations) and the fact
that Mod(S) is finitely presented. One
of the highlights here is that the authors
give several different finite (and infinite!)
presentations and discuss the virtues and
shortcomings of each one. This section also
describes the relationship between Mod(S)
and Sp(2g;Z), and it contains a discus-
sion of the Torelli group and the Johnson
homomorphism.

The second section is concerned with the
geometry of moduli space and its universal
(orbifold) cover Teichmüller space. Com-
pared to the size of this subject, this sec-
tion is comparatively brief; nevertheless, it
contains a good introduction to the the-
ory of quasi-conformal maps, Teichmüller’s
theorem on the existence and uniqueness of
maps minimizing the dilatation in a given
homotopy class of homeomorphism between
Riemann surfaces, andMumford’s compact-
ness criterion and the topology of the “end”
of moduli space.

The third section is concerned with the
Nielsen–Thurston classification of mapping
classes, and especially with the structure of
pseudo-Anosov elements. These can be un-
derstood in many different ways: with holo-
morphic quadratic differentials, measured
singular foliations, transversely measured
geodesic laminations, weighted train-tracks,
and so on. Much of this approach is due to
Thurston, and the book presents Thurston’s
approach to the subject and sketches his
proofs of key results.

The authors manage throughout to con-
vey a coherent, comprehensive, and inte-
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grated vision of the theory of surfaces and
mapping class groups that explains how all
the different ways of thinking about these
objects fit together, and how they connect
with the rest of mathematics. This book
is thus timely and welcome, and should be
of tremendous value to mathematicians of
every stripe.

DANNY CALEGARI

University of Chicago

Fundamentals of Object Tracking. By Sub-
hash Challa, Mark R. Morelande, Darko Mus̆icki,
and Robin J. Evans. Cambridge University Press,
Cambridge, UK, 2011. $95.00. xii+375 pp.,
hardcover. ISBN 978-0-521-87628-5.

This book deals with the important area
of multiple object tracking or multitar-
get tracking. Advances in sensor technol-
ogy have provided data sources for track-
ing moving objects in civilian applications
such as air traffic control or video surveil-
lance, and military applications such as in-
telligence, surveillance, and reconnaissance
(ISR). The objects of interest may move un-
derwater, on the surface or land, or in the
air or space. Sensors may include radar, in-
frared, video, acoustic, seismic, etc. Track-
ing problems also exist in the cyber domain,
where the objects are network activities in-
stead of physical entities and sensors are
intrusion detection devices on the commu-
nication networks and computers. Some ex-
amples are given in Chapter 1 of this book.

Despite the importance of object track-
ing, there are not many books that provide
the fundamentals of object tracking for stu-
dents or engineers who are new to the field.
Until the 2011 book by Bar-Shalom, Wil-
lett, and Tian [1], the most recent book
was [2], published in 1999. Readers who
want to learn about object tracking have to
read papers scattered in many journals and
conference proceedings. Reference [1] is en-
cyclopedic and includes many algorithms,
but it is huge at over 1200 pages. Thus,
there was a need for a more compact book
that provides the basics of object track-
ing without burdening the reader with too
many details. These authors have satisfied
this need with a well-written book that
starts with “the generic Bayesian solution”

and “then shows systematically how to for-
mulate the major tracking problems . . . and
how to derive the standard tracking solu-
tions.” The systematic treatment includes
explicit statements of assumptions such as
point objects with dynamics described by
a Markov process and point measurements
from sensors with infinite resolution. Even
though these assumptions are not valid for
problems such as video surveillance, they
are good approximations for many problems
and necessary for developing implementable
algorithms.

A unique feature of multiobject tracking
is that the sensor measurements frequently
do not come with the identities of the ob-
jects that generate them. Thus association
of measurements to objects is needed be-
fore object states can be estimated. Data
association is the main difference between
object tracking and state estimation or fil-
tering, where algorithms such as Kalman
filtering assume known measurement ori-
gins. Traditional object tracking algorithms
include two main components: state esti-
mation of object tracks given associated
measurements, and association of measure-
ments to object tracks. The major part of
this book discusses algorithms for these two
components using a Bayesian approach.

The Bayesian approach is introduced in
Chapter 1, which formulates object tracking
as a general Bayesian estimation problem
and presents recursive equations for predic-
tion and update of conditional probability
densities. These equations are only nota-
tional because the object states and mea-
surements are random sets and not random
vectors. In fact, the same equations appear
later in Chapter 6: multiple object tracking
in clutter, a random-set-based approach.
Similar equations for general Bayesian mul-
tiple object tracking appear in [3], which
should have been referenced if only because
of its title, Bayesian Multiple Target Track-
ing.

Chapters 2 and 3 focus on the fil-
tering component of object tracking and
present algorithms for generating state esti-
mates and associating measurements. Even
though the chapter titles include the word
“tracking,” the origins of the measurements
are assumed known. Chapter 2 presents
traditional algorithms such as the Kalman
filter and the extended Kalman filter and
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more recent nonlinear algorithms such as
unscented filter, point mass filter, and par-
ticle filter. An example shows the excellent
performance of particle filters, but a com-
parison of the computational costs would
have been useful. Chapter 3 presents fil-
ters for maneuvering objects including the
generalized pseudo-Bayesian filters, the in-
teracting multiple model (IMM) filter, its
variable structure variant, and the particle
filter for maneuvering objects.

Chapters 4 and 5 address the data associ-
ation problem in object tracking. Chapter
4 deals with measurement association to an
existing object track, e.g., whether the mea-
surement is from the object or clutter. It
presents standard approaches such as near-
est neighbor filter, probabilistic data asso-
ciation filter (PDAF), and particle filter in
clutter. Chapter 5 is the longest chapter (al-
most one quarter of the book) and addresses
single andmultiple object tracking using the
object existence paradigm. This paradigm
was developed by the authors to assess the
quality of a track that is updated using the
PDAF and extended to handle more com-
plex problems. For nondeterministic object
existence, when the number of objects is
not known, joint integrated probabilistic
data association (JIPDA) deals with single-
scan association for multiple objects, and
joint integrated track splitting (JITS) treats
multiscan association for multiple objects.
Single object algorithms just drop “joint”
(J) from the names, and multiple model
algorithms add IMM before the names.

The JITS algorithm for multiobject mul-
tiscan tracking is similar to multiple hy-
pothesis tracking (MHT). Even though
JITS does not use the standard MHT ter-
minology of tracks and hypotheses, it also
generates new branches of a track tree at
each scan to account for different associ-
ation alternatives and computes the asso-
ciation probabilities recursively. Since the
number of alternatives (called track com-
ponents in the book) grows rapidly, practi-
cal implementation also requires standard
MHT control techniques such as merging
and pruning. It is understandable that the
authors focus more on their own algorithms
in their book, but more discussion of MHT
and reference to classical papers such as
[4] would have been useful because MHT

is a more popular approach than JITS for
multiobject tracking.

Chapter 6 takes readers back to the re-
cursive Bayesian approach introduced in
Chapter 1 by discussing the random set ap-
proach [5] that does not require separation
into filtering and association. The last three
chapters of the book deal with Bayesian
smoothing using the augmented state ap-
proach, tracking with time-delayed and out-
of-sequence measurements, and some prac-
tical issues in tracking. Three appendices
provide the necessary mathematical back-
ground.

The authors have organized the content
with a very readable format. Most chap-
ters follow the same structure of problem
statement, derivation, algorithms, perfor-
mance bound, and illustrative example. All
43 algorithms are summarized in tables that
provide the necessary equations for imple-
mentation. Most chapters end with an ex-
ample that shows the implementation of the
algorithms and compares algorithm perfor-
mance. More examples would be desirable,
especially for the unconventional applica-
tions discussed in Chapter 1, but this would
be difficult given the small size of the book,
which also forces the authors to skip impor-
tant issues such as tracking with multiple
sensors, extended objects, unresolved mea-
surements, etc.

In summary, this book achieves its objec-
tive of providing the fundamentals of object
tracking. By starting with the Bayesian ap-
proach, it systematically presents the most
important algorithms given some fairly gen-
eral assumptions, and it does this in a small
package. One might wish that it had in-
cluded more discussions of multiobject mul-
tiscan algorithms besides those developed
by the authors; however, it contains almost
everything most readers need to learn about
the fundamentals of object tracking.
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Introduction to Partial Differential Equa-
tions. By Peter J. Olver. Springer International
Publishing, Switzerland, 2014. $69.99. xxvi+
635 pp., hardcover. ISBN 978-3-319-02098-3.

There are plenty of good textbooks for a
first course on partial differential equations
(PDEs) suitable for one-semester courses or
for full-year courses. The classic and widely
adopted text by Haberman [6] comes to
mind, as do texts by (in subjective order of
increasing sophistication; for the record, I
like all of these for many, sometimes very
different reasons) Farlow [4], DuChateau
[3], Asmar [1], Weinberger [11], and Strauss
[9]. Why should one add another to the
list? The answer is obvious, although prob-
ably provocative: because this new addi-
tion is the best one yet. In the interest
of full disclosure, I should mention that I
have taught from the notes that preceded
this book, and I am mentioned in the ac-
knowledgments because of this. In fact, it
is useful to describe the level of the course I
taught. The course had two sections: One
section contained undergraduate students,
mostly seniors, largely majoring in applied
mathematics, mathematics, or physics. The
other section, somewhat bigger, was aimed
at graduate students from a large variety
of science departments (atmospheric sci-
ence, geosciences, oceanography, various en-
gineering departments, etc.). The course
lectures I prepared were identical: my level
of presentation was somewhat more sophis-
ticated for the graduate section, which re-
ceived a few additional harder homework
problems. Such a course is not atypical of
those offered in many departments. What
do I want from a textbook when I teach

this course? Here is an incomplete list: (a)
I want to be able to cover all of the ma-
terial required by the standard first-course
syllabus: separation of variables, heat equa-
tion, Laplace equation, wave equation, and
so on; (b) the text should point to the nu-
merous connections to the application fields
where much of this material originated; (c)
the writing should be clear and understand-
able; (d) there should be enough material
to entice students to go further, by taking
another more advanced course, for instance;
and (e) the book should have a wealth of
homework problems.

This book easily covers all the material
one might want in a course aimed at first-
time students of PDEs. The three main
components of a first course (heat equa-
tion, wave equation, Laplace equation) are
present, and their various standard solv-
able boundary value problems are discussed.
There are several very nice chapters on
problems in multiple dimensions. All classi-
cal solution techniques are introduced: sep-
aration of variables leading to Fourier se-
ries, Fourier transforms, Green’s functions,
and d’Alembert’s solution. One classical
method that is missing is the Laplace trans-
form. I am fine with this; I was never a big
fan, but others may miss it. If so, [6] and
others can be used to supplement this mate-
rial. There are many references to the physi-
cal origins of the problems treated, although
the approach is less grounded in applica-
tions from physics or engineering compared
to, say, [6]. I should mention that some
delightful modern applications are included
such as the Black–Scholes equation from
mathematical finance, image processing and
denoising, and some quantum mechanics.
It has always surprised me how underrep-
resented the latter is in the standard PDE
texts. There are many smaller sections on
related and more advanced mathematical
topics inviting both students and teachers
to go beyond what is available here: two
chapters on numerical methods (see below)
are an obvious example, but there are also
glimpses of symmetry methods (did you see
who wrote this book?) and nonlinear equa-
tions in short sections on the Burgers equa-
tion and the Korteweg–de Vries equation.

This book does not follow the approach of
the typical first course in PDEs from which
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the average student walks away thinking
that they know how to solve PDEs: it might
take be some work, but it is doable. In fact,
the typical first course in ODEs often has
the same effect. This is the main reason I
chose to teach from this book (or the notes,
before the book was available) rather than
any other. It presents the best first course
on solution methods for PDEs, while ad-
mitting that we cannot solve most PDEs
analytically. This admission is made in a
few different ways. First, there is quite a
bit of material on numerical methods for
PDEs, in chapters on finite difference meth-
ods and finite elements. The latter chapter
also discusses weak solutions. This fits in
with the second approach, where a slow
transition to qualitative methods is made
through function spaces, adjoints, and max-
imum principles. This material allows for an
easy transition to a more advanced course
which in many other cases can be quite dis-
joint from a first course. The book strikes a
near-perfect balance between rigor and ac-
cessibility, given the audience it is aimed at.

The book places less focus on complex
analysis than a classic like [11] does. Not
many newer books do, and this is not sur-
prising. I am unhappy with this trend, as I
have yet to see a complex analysis technique
I dislike. I am not alone in this [7, 10]. I be-
lieve that a recent method due to Fokas [2, 5]
will be part of the standard first-course PDE
curriculum within a decade and it should
find itself in textbooks soon. Since it re-
quires a bit of complex analysis, perhaps
the trend will reverse.

Let me discuss the chapters on numerical
methods a bit more. Both are well done and
fit in well with the other chapters. I believe
students truly benefit from the treatment
given here, within the context of PDEs.
If you are teaching a one-quarter or one-
semester course, it is unlikely your syllabus
will have room for the inclusion of these
chapters. On the other hand, if you have
an entire academic year at your disposal,
incorporating these chapters into your syl-
labus is a great idea.

The book is written very well. It is clear
that the author is serious about conveying
the message transparently, and it is equally
clear that the text has gone through a num-
ber of iterations, resulting in very few if any

errors, typographical or otherwise. I recall
teaching from the precursor notes two years
ago and finding very few errors at that
point, having covered at least parts of 8 of
12 chapters. The text has many homework
problems, which range from run-of-the-mill
boundary value problems, necessary so stu-
dents can repeat steps shown in class with-
out much change, to harder and usually
more interesting ones. I found myself going
outside the homework problems available in
the notes on only a few occasions. The book
is published by Springer, listed at $70 (hard-
cover) or $50 (e-book). That price is quite
a bit lower than [6] or [9]; it is comparable
to [1] (paperback edition), but more expen-
sive than [3, 4, 11], all of which are Dover
paperbacks. The hardcover version seems
to be of good quality, although the cover
has started to separate from the book on
both of my copies. Some may be interested
to know that an instructor solution manual
containing detailed solutions to about half
of the problems will be available in the near
future.

In addition to other higher-level texts,
Peter Olver has now given us a second un-
dergraduate textbook, following [8]. Like
the latter linear algebra textbook, I recom-
mend this one highly: It provides the best
first-course introduction to a vast and ever-
more relevant and active area. Students,
and perhaps instructors too, will learn much
from it. If they wish to go beyond the ma-
terial taught in a first course, this text will
prepare them better than any other I know.
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Classical and Multilinear Harmonic Anal-
ysis. Vols. I and II. By Camil Muscalu and Wil-
helm Schlag. Cambridge University Press, Cam-
bridge, UK, 2013. $135.00. 760 pp., hardcover.
ISBN 978-1-107-03262-0.

This two-volume set is a noteworthy ad-
dition to the expository literature on har-
monic analysis. The authors have assem-
bled a large amount of important material
into a compact and well-organized package,
and their exposition is terse but clear and
well motivated.

The first volume offers a unified treat-
ment of a number of important topics in
classical harmonic analysis, beginning with
Fourier series and leading up to more re-
cent results such as Fourier restriction theo-
rems and the T (1) theorem, with emphasis
on techniques such as Calderón–Zygmund
theory and Littlewood–Paley theory that
continue to play an important role in re-
search. It provides an excellent resource for

readers who are familiar with the basics
of Fourier analysis and wish to acquire a
deeper understanding of the subject. The
second volume deals with multilinear har-
monic analysis, with emphasis on work of
the first author and his collaborators. The
central theme is the notion of paraprod-
uct, and the high points include proofs of
the by-now classic theorems on Calderón
commutators, Cauchy integrals on Lipschitz
curves, and almost everywhere convergence
of Fourier series.

The reviewer has written a more detailed
review of these books for Mathematical Re-
views (review MR3052498 on MathSciNet).

GERALD B. FOLLAND

University of Washington

Mathematics of Two-Dimensional Turbu-
lence. By Sergei Kuksin and Armen Shirikyan.
Cambridge University Press, Cambridge, UK,
2012. $85.00. xvi+320 pp., hardcover. ISBN
978-1-107-02282-9.

Two-dimensional turbulence has been a
very active and intriguing area of research
over the last five decades, since the publi-
cation of Robert Kraichnan’s seminal pa-
per [1] postulating the dual cascade the-
ory. Some reviews are given in [2, 3, 4].
The original motivation for studying two-
dimensional turbulence was the belief that
it would prove to be an easier problem
than three-dimensional turbulence and that
mathematical techniques developed for the
two-dimensional problem would then be
used for the three-dimensional problem. It
was also believed that two-dimensional tur-
bulence theory could explain flows in very
thin domains, such as the large-scale phe-
nomenology of turbulence in planetary at-
mospheres.

In general terms, theoretical studies of
turbulence use a wide range of strategies,
including phenomenological theories, ana-
lytic theories that depend on hypotheses
established experimentally or via numerical
simulations, and mathematically rigorous
theorems on the Navier–Stokes equations.
With a phenomenological approach, one
makes a series of hypotheses based on ex-
perimental evidence and physical intuition
from which conclusions can be drawn about
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universal features of turbulence. The Kol-
mogorov theory of three-dimensional tur-
bulence [5, 6, 7] and Kraichnan’s theory of
two-dimensional turbulence [1] typify this
approach. In both cases, minimal contact
is made with the Navier–Stokes equations.
Nevertheless, a lot of successful numeri-
cal and experimental work has been moti-
vated by phenomenological theories. With
the more rigorous strategy of formulating
analytical theories of turbulence, one uses
the governing equations as a point of de-
parture to formulate perturbative closure
models or nonperturbative strategies. The
mathematical foundation for the most ad-
vanced of these theories is the Martin–
Siggia–Rose formalism [8, 9] (hereafterMSR
formalism), with reviews given in [10, 11].
These theories cannot be completely rigor-
ous on their own since the use of the MSR
formalism entails certain assumptions: (a)
existence and uniqueness of a deterministic
solution for the velocity field given a choice
of deterministic forcing field; (b) the as-
sumption that the system was initialized at
time t → −∞ and has already converged to
statistical steady state. Furthermore, some
lack of rigor stems from the dependence on
Feynman path integrals. Finally, to con-
nect theoretical predictions about ensemble
averages with numerical simulations and ex-
periments requires the additional assump-
tion of ergodicity. Having made these as-
sumptions, the payoff is that it is possible
to make considerable inroads toward clar-
ifying, explaining, and predicting the phe-
nomenological behavior of turbulence for
the two-dimensional as well as the three-
dimensional case. Finally, another strategy
is to prove mathematically rigorous the-
orems about the Navier–Stokes equations
using functional analysis and dynamical
systems theory techniques. This approach,
pioneered by distinguished mathematicians
like Leray, Foias, Temam, and many others,
has successfully yielded solid results. The
price is that it is too difficult to venture as
far as one can go using less rigorous strate-
gies that incorporate hypotheses evidenced
by experiment or numerical simulations.

Ultimately, all of the above strategies
have strengths and weaknesses that com-
plement one another. A curious irony
of two-dimensional turbulence research is

that whereas the phenomenology of two-
dimensional turbulence is richer and poses
many more challenges than that of three-
dimensional turbulence, two-dimensional
turbulence has turned out to be far more
amenable to the pure mathematician’s
toolbox. The current book under review
by Kuksin and Shirikyan surveys recent
developments in the mathematical the-
ory of the two-dimensional Navier–Stokes
equations that are, with no exaggeration,
quite breathtaking. The authors use the
randomly forced two-dimensional Navier–
Stokes equation with a regular Laplacian
dissipation term at small scales as their
ansatz. Three types of random forcing are
considered: (a) kick forcing, consisting of,
equispaced in time, delta function spikes
with random amplitudes; (b) white noise,
i.e., random Gaussian delta-correlated in
time forcing, commonly used in MSR theo-
ries; (c) compound Poisson processes, which
are random kick forces where both the am-
plitude and the temporal separation be-
tween the delta function spikes are ran-
domized.

The authors begin in Chapter 1 with a
very terse yet comprehensive review of es-
sential concepts, needed for the proofs of
the main results, from the areas of function
spaces, measure theory, and Markov ran-
dom dynamical systems. A solid graduate
education in functional analysis is neces-
sary to follow the chapter, but the authors
provide citations to many other books that
explain underlying concepts in more detail.
Chapter 2 begins with a review of the clas-
sical Leray results on the existence, unique-
ness, and regularity of solutions for the
case of the two-dimensional Navier–Stokes
equations with deterministic forcing. For
the case of stochastic forcing, a series of
important general results are proved that
culminate in proving the existence of at
least one stationary measure. In physical
terms, a stationary measure describes the
steady-state solution to the randomly forced
Navier–Stokes equations when a dynamical
balance has been established between forc-
ing and dissipation and the ensemble av-
erages for all observables become constant
with respect to time.

The argument continues in Chapter 3
with an array of results establishing the
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uniqueness of the stationary measure as
well as the property of exponential mix-
ing, both for periodic flows on an infinite
domain and for flows on a bounded domain
for various random forcing configurations.
In physical terms, the property of expo-
nential mixing means that regardless of the
initial condition, the randomly forced two-
dimensional Navier–Stokes equation will
statistically converge to the steady-state
solution at an exponential rate. This con-
vergence has been established for both the
velocity field itself and relevant observables,
dependent on the velocity field, such as the
energy spectrum. The authors also estab-
lish that if the random force is homoge-
neous, then the velocity field at steady state
will also be homogeneous. The chapter con-
cludes with a literature review as well as a
physical summary of the main results.

Chapter 4 establishes ergodic theorems
as well as some interesting limiting theo-
rems. In particular, the authors establish
that the time average of observables, depen-
dent on the velocity field, quickly converge
to the ensemble average as one extends the
time interval over which the time average is
taken. The authors also establish a central
limit theorem that shows that the velocity
probability distribution is close to Gaus-
sian, in agreement with experiments and
numerical simulations (see [3] for a review).
Furthermore, the authors prove that the
statistical properties of the velocity field at
steady state will vary continuously as one
varies the statistical parameters of random
forcing. Finally, the authors prove that the
steady-state solution of a system forced by
random kicks will converge to the steady
state of the system forced by white noise if
the time gap between kicks is shrunk by a
factor ε, taking the limit ε → 0+ , as long as
the amplitude of the kicks is also decreased
by a factor of

√
ε.

Having established the existence and
uniqueness of a stationary measure for the
case of finite viscosity, in Chapter 5, the au-
thors investigate the stationary measure un-
der the limit ν → 0+ of viscosity approach-
ing zero. For technical reasons, instead of
using a continuous limit it is necessary to
work with the discrete limit νk → 0+ with
k ∈ N for some chosen viscosity sequence
that converges to zero. The authors prove

that for every such viscosity sequence, the
corresponding stationary measures have a
nontrivial limit, as long as forcing is moder-
ated by an

√
νk factor. It remains an open

question whether all possible sequences such
that νk → 0+ with k ∈ N lead to a unique
limit for the stationary measure. However,
it is proved that all stationary measures
obtained from any viscosity sequence limit
to zero will satisfy certain universal prop-
erties from which a phenomenology of two-
dimensional turbulence can be deduced.
From these universal properties, if we intro-
duce the assumption that the energy spec-
trum follows a power law, downscale from
the forcing range, it is predicted that the en-
ergy spectrum will scale as k−a with a ≥ 5,
where k is the wavenumber. The authors
also identify an unproven conjecture that
would rigorously imply a = 5.

Finally, in Chapter 6 the authors outline
without proof a number of incomplete re-
sults whose development is the subject of
current active research. A special highlight
is a result that shows that the stationary
measure of the three-dimensional Navier–
Stokes equations, defined in a quasi-two-
dimensional domain in which the vertical
direction is very thin, and also randomly
forced by random kicks, will converge to
the corresponding stationary measure of
the two-dimensional Navier–Stokes equa-
tions. However, it remains an open question
whether this result can be extended for the
case of white noise forcing.

In light of the foregoing discussion, the
significance of these results is clear. In every
well-known theory of two-dimensional and
three-dimensional turbulence, one takes for
granted the existence and uniqueness of
the statistical steady-state solution, that
a forced dissipative system will always con-
verge to the steady-state solution, that the
ensemble average can be exchanged with a
time average, and that the discrete kick forc-
ing typically used by numerical simulations,
where time is discretized, properly approx-
imates the case of continuous white noise
forcing. These are all assumptions that un-
derlie every theoretical effort to understand
the phenomenology of turbulence, but they
are also assumptions that are not easy to
prove. It is very reassuring to see that dur-
ing the last decade, at least for the case of
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two-dimensional Navier–Stokes turbulence,
all of these assumptions have been proved
rigorously. This is a major achievement,
and the authors are leading experts who
have played a key role in the development
of many of these results.

It is also worth commenting on the phe-
nomenology of the k−5 energy spectrum
predicted in Chapter 5. This is not an en-
tirely new result. It was first proposed by
Tran and Shepherd [12] and Tran and Bow-
man [13], who predicted a k−5 spectrum
downscale from the forcing range and a k−3

spectrum upscale from the forcing range.
This phenomenology is inconsistent with
Kraichnan’s theory [1] of a downscale en-
strophy cascade with k−3 scaling and an
upscale inverse energy cascade with k−5/3

scaling. As was explained by Tran and
Shepherd [12], the Kraichnan cascades will
fail to materialize in the absence of a dis-
sipation term at large scales in a bounded
domain flow. On an infinite domain, en-
ergy can simply cascade forever to larger
and larger scales, and enstrophy can cas-
cade to small scales and be dissipated by
the small-scale diffusion term. However, on
a finite domain, if there is no mechanism to
dissipate the upscale energy cascade before
it hits the largest possible scales, then the
cascade configuration will collapse and tran-
sition to the conjectured joint k−3 and k−5

configuration. The results by the authors
vindicate the work of Tran et al. [12, 13, 14]
by eliminating unproven assumptions that
they made in order to establish their pre-
dictions. As important as this development
is, the greater challenge of understanding
the robustness of the Kraichnan cascades
remains an open question.

Finally, I should like to make some com-
ments about the book itself. It has been
written primarily for an audience of pure
mathematicians who wish to familiarize
themselves with this research area so they
can make further contributions. The writ-
ing style is very concise; however, the au-
thors provide complete proofs for almost
all of their results. An extensive array of
very general preliminary results needs to be
established before the main results can be
proved. The preliminary results are useful
in and of themselves and can be used for
the future investigation of systems other

than the randomly forced two-dimensional
Navier–Stokes equations. The authors men-
tion the complex Ginzburg–Landau equa-
tion as a possible area of exploration. An
extensive bibliography of more than 200 ref-
erences is given, and I very much appreciate
the reverse citation system in which for each
item in the bibliography the authors give
the page numbers where the given item is
cited in the text. Much heavy notation is
used throughout the book; however, the
authors provide a very useful summary of
notation conventions at the end. Last but
not least, in Chapters 3, 4, and 5 where
the main results are discussed, the authors
conclude each chapter with a very clear dis-
cussion of the physical implications of their
results. These sections are essential to mak-
ing this work accessible to a more applied
audience. A very detailed literature review
is also given at the end of every chapter
for those who wish to consult the original
research papers.

In summary, this is an excellent book
presenting and proving a body of results
that are of fundamental importance in the
development of theories of two-dimensional
turbulence. For pure mathematicians, there
is much to be learned from the techniques
used to prove the theorems that can be
applied to a wider range of problems. For
applied mathematicians, it is certainly use-
ful to have some understanding of what has
been proved rigorously for two-dimensional
Navier–Stokes. The results themselves are
very interesting and their physical implica-
tions are clearly explained. While this is
not a book for the faint of heart, I find
it an excellent addition to my library and
strongly recommend it to everyone engaged
in theoretical research on two-dimensional
turbulence.
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ELEFTHERIOS GKIOULEKAS

University of Texas–Pan American

Mathematical Physics: A Modern Intro-
duction to Its Foundations. Second Edi-
tion. By Sadri Hassani. Springer Interna-
tional Publishing, Switzerland, 2013. $99.00.
xxxii+1205 pp., hardcover. ISBN 978-3-319-
01194-3.

Mathematical Physics: A Modern Introduc-
tion to Its Foundations is intended for adop-
tion in a course or a sequence of “methods of
mathematical physics” at the advanced un-
dergraduate or beginning graduate level. In
this respect it will compete with other stan-
dard “methods” textbooks such as those of
Boas [4], Arfken and Weber [2], Mathews
and Walker [11], Byron and Fuller [5], and
others.

The textbook has been reviewed posi-
tively by Pure and Applied Geophysics, Zen-
tralblatt Math, and the European Mathe-
matical Society newsletter, and excerpts ap-
pear on its Amazon and Springer web pages.

The title may be somewhat misleading.
What are considered to be foundations by
mathematicians may be quite different from
the corresponding perception of physicists.
The book does not discuss mathematical
foundations in the spirit of Elliot Lieb’s
Analysis [10], for example. Instead, the text
is written in a formal (but not abstract) way
that emphasizes a general formulation of a
topic before it is illustrated with numerous
examples, usually drawn from the under-
graduate physics curriculum. In this sense it
differs significantly from the aforementioned
“methods” texts, which are more informally
written. Thus, the student of physics will
be exposed to a necessary formalism whose
applications are met repeatedly in the study
of physics.

Particularly nice is Chapter 4, where the
author addresses the algebra of endomor-
phisms of a vector space. The author defines
polynomial operators p(T) such as rotation
operators, the exponential operator exp(T),
commutators, projectors, and their calcu-
lus, all of which are used in a course of
quantum mechanics, at the level of Saku-
rai [13]. Matrix representations of the op-
erators are developed in Chapter 5 along
with diagonalization and change of basis.
The Dirac bra-ket notation is used through-
out. Orthogonal polynomials are developed
as vectors in Hilbert space rather than as
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series solutions of second-order differential
equations with singular points. The author
develops the main points and theorems of
infinite-dimensional vector spaces without
hiding their essence behind puristic clut-
ter. Chapter 6 discusses spectral decom-
positions and projection operators and has
a very nice discussion of simultaneous di-
agonalization, which, for example, can be
used classically in small oscillations or quan-
tum mechanically for simultaneous mea-
surements. A very nice discussion of the
polar decomposition theorem follows, fa-
miliar to applied mathematicians from ba-
sic continuum mechanics, but here the au-
thor makes a connection with numbers and
quantummechanical operators. Basic infor-
mation about Hilbert space and the Dirac
delta function appear in Chapter 7 as well
as a short discussion of distributions. Part
IV discusses differential equations including
existence theorems, power series solutions
with applications to the quantum harmonic
oscillator, and the WKB method. Part V
discusses operators in Hilbert space with
Sturm–Liouville systems as a special case,
where the author develops the method of
separation of variables.

I particularly liked Part VI, which is de-
voted to Green’s functions, i.e., a topic
that is scarce in the mathematics curric-
ula unless you have the luck to be taught
by an exceptional academic like Werner
Weighlhofer, my Green’s function teacher.
Again, the author first builds the neces-
sary formal background before illustrating
the main points with examples drawn from
classical electrodynamics and quantum me-
chanics. Part VII discusses basic group the-
ory with emphasis on topics of interest in
high energy physics such as group charac-
ters and tensor products of representations.
Part VIII builds the formalism of tensor
calculus, forms, symplectic geometry, and
Clifford algebras. The forms are somewhat
close in character to that of Flanders [6].

Part IX discusses Lie groups, algebras,
and their representations. Two chapters of
this part deserve special mention. Chap-
ter 32 discusses symmetries of differential
equations in the spirit of Peter Olver [12].
This important topic is written in an ap-
proachable manner that makes connections
with standard quantum mechanical observ-

ables, e.g., angular momentum. Chapter
33 discusses calculus of variations in a very
well written manner including the notion of
functional derivatives that other compet-
ing texts prefer to avoid. In some sense its
exposition is somewhat more rigorous than
that of Gelfand and Fomin [7], but also more
restricted in scope. In section 33.1.4 the au-
thor discusses the ideas of divergence and
null Lagrangians on which one of the most
important recent advances in existence the-
orems of nonlinear elasticity by John Ball
and coworkers [3] is based.

Part X discusses fiber bundles, gauge the-
ories, and Riemannian geometry. This last
topic is very close to the exposition of Stew-
art [14]. Not only students of relativity, but
also those of condensed matter field theory
who read, for example, [1] and [9] will ben-
efit, obtaining all required geometry foun-
dations.

What are missing from this textbook are
methods met in equilibrium and nonequi-
librium statistical mechanics written in a
rigorous but clear manner. I have found
no such exposition in any textbook. Ba-
sic probability and stochastic processes at
the level of Papoulis and Ross (models of
probability) would be advantageous in the
text. Also, perturbation theory is included
in the Green’s function sections but it would
be more pedagogically correct if elemen-
tary ideas such as its application to singu-
larly perturbed nonlinear oscillators could
be discussed earlier, for example, in the dif-
ferential equations part. In addition, some
elementary results of perturbation theory
and their associated diagrams might also be
beneficial for the reader. The text would be
more adaptable for self-study if the number
of references was increased and citations
appeared more frequently.

To conclude, this is a textbook that ev-
ery library must have (with a large num-
ber of copies in reserve), and it will be
a valuable aid for committed students, re-
searchers, and instructors of science and
applied mathematics. It is sold at almost
half the price of some popular hardback
differential equations textbooks offered by
some mainstream publishers at extortion-
ate prices. This is to the merit of Springer,
and of the author for choosing a (relatively)
low-cost publisher.
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A few words about the author of Math-
ematical Physics: A Modern Introduction
to Its Foundations. Sadri Hassani received
his Ph.D. from Princeton University in
high energy physics and is currently Pro-
fessor of Physics at Illinois State Univer-
sity. He has strong and adamant views
about the state of education in the United
States. Being a skeptical educator, his
views can be read in his personal blog at
www.skepticaleducator.org.

Ralph Boas [8], reviewingTheMathemat-
ics of Physics and Chemistry by Margenau
and Murphy, characterized its content as
“pidgin mathematics,” i.e., “a clumsy and
inept parody of mathematics” that can “be
read by mathematicians who want to ac-
quire a smattering of physics to impress
their friends.” From Ralph’s standpoint,
Hassani’s textbook also falls into this cat-
egory. However, V. I. Arnold in his ad-
dress in Palais de Découverte in Paris on
March 7, 1997, stated that “the return of
mathematical teaching at all levels from the
scholastic chatter to presenting the impor-
tant domain of natural science is an espe-
cially hot problem.” Hassani’s exposition
does exactly that.
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ELEFTHERIOS KIRKINIS

Northwestern University and
Queensland University of Technology

Numerical Methods in Finance with C++.
By Maciej J. Capiński and Tomasz Zastawniak.
Cambridge University Press, Cambridge, UK,
2012. $39.99. x+166 pp., softcover. ISBN 978-
0-521-17716-0.

Numerical Methods in Finance with C++ is
part of the series “Mastering Mathemat-
ical Finance” and is an introduction to
C++ programming targeted primarily at
students in quantitative and mathematical
finance masters programs. This book relies
on the theory of option pricing to develop
a sequence of programming tasks designed
to introduce the reader to the C++ lan-
guage, as well as to nonlinear solvers, Monte
Carlo methods, and finite difference meth-
ods. The tasks in the first two (and, to some
degree, the third) chapters are a particularly
well-thought-out introduction to the C++
language and could easily form the core part
of a syllabus for a financial programming
course. The tasks in the numerical methods
portion of the text serve to introduce the
reader to several finance problems that lend

D
ow

nl
oa

de
d 

11
/0

2/
14

 to
 1

28
.1

35
.1

2.
12

7.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

568 BOOK REVIEWS

themselves to numerical solution, and also
to reinforce earlier C++ concepts.

The authors take the somewhat novel ap-
proach of placing a code solution near (or,
in one case, at) the beginning of each pro-
gramming task, then following it up with a
line-by-line description of what that code is
doing. By using this design, they are able to
introduce only the C++ language features
and tools needed to tackle the task at hand,
which prevents the reader from being over-
whelmed by a comprehensive list of C++
capabilities. On the other hand, it does
mean that some features are left out (e.g.,
protected members). However, these omis-
sions are not too big of a drawback since,
as the authors point out, there are many
existing C++ manuals and online resources
that the interested reader may turn to.

The book is organized as follows. The
first three chapters comprise the introduc-
tion to the C++ portion of the book.
An option pricer based on the binomial
model for asset prices and the Cox–Ross–
Rubinstein procedure is employed to intro-
duce C++ language features: classes and
subclasses, inheritance, virtual functions,
multiple inheritance, and class templates.
Chapter 4 uses nonlinear solvers (bisection
and Newton–Raphson) to solve the implied
volatility problem. Chapter 5 uses Monte
Carlo methods to price path-dependent op-
tions. Finally, Chapter 6 uses finite differ-
ence methods to solve parabolic partial dif-
ferential equations with the goal of pricing
an American option.

This book falls roughly in the middle of
the “Mastering Mathematical Finance” se-
ries and therefore assumes that the reader is
already familiar with the underlying finan-
cial topics (in particular, option pricing).
Further, while the book does start from
scratch with respect to C++ (the author’s
Hi there version of the ubiquitous Hello
world program appears on page 3), readers
who are already able to program (in some
language) will likely have a much easier time
working through the programming tasks.

My only criticism of this book is the
lack of mention of a C++ compiler or inte-
grated development environment (IDE). An
IDE is such an integral part of C++ devel-
opment that its use should be encouraged
from the beginning. In particular, an IDE

makes debugging much easier. Presently,
readers self-studying this book must deal
with the significant additional step of figur-
ing out how to compile their first program.

This book could be used as the primary
text for a C++ programming course in a
quantitative or computational finance pro-
gram. The text is well organized and easy
to follow, and the exercises are at the appro-
priate level. Proficiency with this subject
matter should be viewed as prerequisite for
a career in quantitative finance and/or pro-
gramming.

KJELL P. KONIS

University of Washington

Analytic Perturbation Theory and Its Ap-
plications. By Konstantin E. Avrachenkov, Jerzy
A. Filar, and Phil G. Howlett. SIAM, Philadelphia,
2014. $89.00. x+369 pp., hardcover. ISBN
978-1-611973-13-6.

Konstantin Avrachenkov received a Ph.D.
in 1999 from the University of South Aus-
tralia, with Jerzy Filar and Phil Howlett as
advisors. Since that time, the authors have
further developed and applied the subject of
analytic perturbation theory, together with
a variety of coauthors, in both finite- and
infinite-dimensional contexts. The end re-
sult is an authoritative SIAM monograph,
intended as a textbook, filled with outstand-
ing exposition and explicitly detailed exam-
ples.

The classical topic, linear and polynomial
systems of algebraic equations depending
analytically on a small parameter, is an
important and challenging subject. Singu-
lar perturbations occur when the solution
involves a Laurent expansion. (Thus, the
setting is far removed from the usual differ-
ential equations formulations.) The focus
here is on generalized inverses, Puiseux se-
ries, Groebner bases, the Newton polygon,
mathematical programming, and Markov
decision processes, in lovely series and ma-
trix equations. Who would guess that the
Google PageRank can be efficiently de-
scribed as a singularly perturbed Markov
chain?

Such problems becomemore varied as lin-
ear operators in Hilbert and Banach spaces,
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where some functional analysis must be in-
troduced. The authors clearly explain and
motivate their development, leaving prob-
lems at chapter ends as well as bibliographic
notes. If your interests include linear anal-
ysis, complex variables, optimization, and
their applications, you’ll find much of prac-
tical value here, eloquently presented.

Readers will find that there’s much
new to learn since Kato and Vishik and
Lyusternik appeared in the 1960s!

ROBERT E. O’MALLEY, JR.

University of Washington

Beautiful Geometry. By E. Maor and E. Jost.
Princeton University Press, Princeton, NJ, 2014.
$27.95. xii+187 pp., hardcover. ISBN 978-0-
691-15099-4.

This is a great book to buy your high-
school age child (or grandchild) or their
math teacher. It consists of 51 short chap-
ters and an appendix with short proofs.
The unusual topics vary from various ge-
ometry problems (with many references to
Euclid and Coxeter) to numbers, symme-
try, and the Reuleaux and Sierpinski trian-
gles. Each chapter is well written and illus-
trated using detailed figures by the math
historian/writer Eli Maor and is enhanced
by colorful related plates (not necessarily
mathematical) by the Swiss artist Eugen
Jost. Compass constructions inspired, for
example, “Seven Circles a Flower Maketh,”
while the number eleven suggests a Celtic
motif. No college math is required, but
thinking is.

ROBERT E. O’MALLEY, JR.

University of Washington

Five Decades of Tackling Models for
Stiff Fluid Dynamics Problems: A Sci-
entific Autobiography. By R. Zh. Zeytou-
nian. Springer, New York, 2014. $129.00.
xxvi+153 pp., hardcover. ISBN 978-3-642-
39540-6.

Radyadour Zeytounian was born in Paris
in 1928, became an apprentice tailor, and
emigrated to Armenia in 1947, where he fin-

ished secondary school, got a math degree
from Yerevan State University, and taught
high school for a year. He moved to Moscow
in 1957, where he wrote a Kandidat thesis
on lee winds downstream of a mountain
with I. A. Kibel of Moscow State’s depart-
ment of dynamic meteorology, married a
Russian, had a daughter, and worked from
1961 to 1965 at the Moscow Meteorological
Computing Center. Taking advantage of a
visit from DeGaulle, the family moved to
Paris when Zeytounian was 38.

Zeytounian worked in the aerodynamics
department at the French space agency ON-
ERA from 1967 to 1972 and as a professor
at the University of Lille-I from 1972 to
1996. He earned a doctorate in 1969, af-
ter his committee member Paul Germain
forced him to justify the Boussinesq ap-
proximation via asymptotics. He learned
matched asymptotic expansions from Jean-
Pierre Guiraud and they planned books
on rational asymptotic modeling (RAM),
which ultimately failed to reach Guiraud’s
standard of perfection. Nonetheless, Zey-
tounian wrote many books on related topics
and Guiraud kindly wrote the foreword to
this one. The book outlines his unusual life
and work, justifying some of it by quoting
(even somewhat critical) reviews.

The most outstanding chapter develops
the basic Navier–Stokes–Fourier equations
in a historical context. Overall, readers will
realize the unique value of Zeytounian’s
work and perspective and will come to ap-
preciate his willingness to tackle very diffi-
cult problems, aiming to help fluid dynami-
cal “numericians.” An example is modeling
turbomachinery using the number of blades
on a rotor as a large parameter. Readers will
need to overlook the author’s difficulties in
writing and Springer’s lack of copyediting.

ROBERT E. O’MALLEY, JR.

University of Washington

Introduction to the Network Approxima-
tion Method for Materials Modeling. By L.
Berlyand, A. G. Kolpakov, and A. Novikov. Cam-
bridge University Press, Cambridge, UK, 2013.
$80.00. xiv+243 pp., hardcover. ISBN 978-1-
107-02823-4.D
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The book introduces and analyzes a new
effective method for the computation of
themacroscopic properties of heterogeneous
materials containing dispersed discs. This
method is based on network approxima-
tion, i.e., the discs are replaced by their
centers forming the so-called Delaunay–
Voronoi graph, and the partial differential
equation in the continuous, but heteroge-
neous, media is replaced by a natural dis-
crete problem on the graph. This method
is justified in the case of closely spaced per-
fectly conductive discs.

In physics and engineering, network mod-
els became classical after the book by Born
and Huang [1] and have been intensively
used ever since. The best-known exam-
ple of the structural approximation is the
“sprin” model used to describe a great va-
riety of phenomena from molecular dynam-
ics to composite materials; see examples in
Sahimi [2].

Generally, the main tool of the multi-
scale modeling of composite materials is
the homogenization method. However, this
method is very sensitive to the periodicity of
the inclusions: if the inclusions are not pe-
riodically spaced, then the result of the ho-
mogenization becomes much less “algorith-
mic.” This means that in nonperiodic cases,
theoretically one can justify the existence of
an equivalent homogeneous medium, but it
is very difficult to compute its macroscopic
properties.

Another issue complicating the applica-
tion of the homogenization method is the
presence of multiple small parameters in the
problem, in particular, contrasting proper-
ties of the components of the composite
material, thin regions spacing the discs,
and a strong concentration of local fields
in these regions. More specifically, the con-
trasting properties (such as heat or electri-
cal conductivity) of the components may
fall beyond the limits of applicability of the
homogenization approach see [3].

That is why the rigorous analysis of the
proposed methods is very important. In the
present book the reader finds an excellent
introduction to a new method that is appli-
cable in exactly this most difficult case of
a nonperiodic composite with contrasting
properties, presented by the authors of this
method.

The book’s preface discusses the rela-
tion between the discrete and continuous
models. Chapter 1 reminds the reader of
mathematical notions and facts used later
in the book in the description and justifi-
cation of the method of network approxi-
mations. This review is brief, but contains
all necessary references for the reader who
wants to study the question more deeply.
Chapter 2 provides an introduction to the
theory giving the motivation and some basic
simple examples explaining the main idea
of the method. Chapter 3 is the central
one. It introduces the rigorous formulation
of the problem and contains the complete
proof of the main theorem (Theorem 3.14)
justifying the network approximation for-
mula (3.8.17) in the case of a finite number
of closely spaced perfectly conductive inclu-
sions. The main idea of the proof is the con-
struction of upper and lower bounds for the
effective coefficient in such a way that the
leading terms of the asymptotic expansions
coincide. The network approximations give
an asymptotic solution to the problem of
capacity of an arbitrary (random) system
of many closely placed discs. The asymp-
totics of capacity may be computed from
the solution to an algebraic N × N linear
system, where N is the number of the disks.

The advantage of the book is that it con-
tains not only theoretical results, but the
numerical experiments as well, and Chap-
ter 4 is devoted to numerics for percolation
using the method of network approxima-
tions. It contains very interesting results
for the effective conductivity. Chapter 5
considers the case of an infinite number of
closely spaced perfectly conductive inclu-
sions; it contains the rigorous formulation of
the problem and the main theorem, which
shows that the error of the network ap-
proximation is determined not by the total
number of particles (as is usual in homog-
enization theory), but by the perimeter of
the spaces between the groups of neighbor-
ing particles. Chapter 6 generalizes the net-
work approximation approach to the case of
nonlinear settings for the field equation (p-
Laplacian). The previous chapters treated
conductivity of the material “as a whole,”
that is, as a characteristic integral. Chap-
ter 7 studies local properties of the network
approximation approach. It shows, in par-
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ticular, that the potentials of the nodes in
the network approximation corresponding
to the centers of closely spaced perfectly
conducting discs approximate the real po-
tentials of the discs in the continuous model.
Chapter 8 describes complex variable meth-
ods in the analysis of two-dimensional prob-
lems for closely spaced discs.

The book is well written. It gives an easy
but detailed and comprehensive introduc-
tion to the subject. The methods are ex-
plained in simple examples. The proofs are
supplied by physical and geometrical inter-
pretations so that the book is comprehensi-
ble to a wide spectrum of readers who may
not be specialists in the topic. In particu-
lar, it will be interesting for Ph.D. students
in mathematics, physics, chemistry, or en-
gineering. The price is low at around £50
in Cambridge University Press catalogue.
Manufactured on demand, it is supplied di-
rectly from the printer and a second edition
will be available in paperback.
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Université de Saint-Etienne

Number Theory. A Historical Approach.
By John J. Watkins. Princeton University Press,
Princeton, NJ, 2013. $75.00. xvi+592 pp., hard-
cover. ISBN 978-0-691-15940-9.

This book could well have been titled Num-
ber Theory and Its History, if Oystein Ore
hadn’t already used that title for a book
published in 1948. Ore’s book is something
of a classic, but I believe that the modern
reader will find Watkins’ book much more
satisfying. It is far richer, deeper, and more
comprehensive—which shows that number
theory has become a much more main-

stream subject than it was in 1948. Not
only has it become a standard undergradu-
ate course, it is almost required reading for
a public concerned about the security and
privacy of the internet.

Watkins’ Number Theory is ideal for a
variety of readers: it is well suited to an
undergraduate course and also as general
reading for anyone from a bright high school
student to a mathematician with an interest
in number theory. In my opinion it main-
tains the perfect balance between mathe-
matics and history: most of the theorems
are proved in complete and rigorous fash-
ion, as one would expect in a mathematics
course, but the history explains where the
ideas came from and why they were of inter-
est to mathematicians. Also, of course, the
history of number theory is particularly rich
in characters and anecdotes (think Hardy,
Ramanujan, and the number 1729).

The mathematical content includes the
usual core topics: Pythagorean triples, ex-
istence and uniqueness of prime factoriza-
tion, the Euclidean algorithm, linear and
quadratic Diophantine equations (particu-
larly the Pell equation), congruences, sums
of squares, and quadratic reciprocity. These
topics ensure that the book could be used as
an undergraduate number theory textbook,
but there are many other topics that en-
hance its flavor and usefulness: algorithms
for factorization and primality testing, cryp-
tography (more than just RSA), the Fi-
bonacci numbers, continued fractions, and
partitions.

The methods used are mostly elemen-
tary (though they grow in complexity as
the book unfolds) with essentially no alge-
braic or analytic number theory. Thus, as
Watkins says,

there is almost nothing in terms of pre-
requisites that readers need to bring
along with them except enthusiasm
and curiosity.

I wished at first that Watkins had taken
the opportunity to describe the evolution of
algebraic and analytic methods that took
place in response to the evolution of number
theory, but on reflection I think he is wise
to stick to elementary methods. The book
is already quite hefty, and it would have
become overweight if algebra and analysis
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were treated as full partners of number
theory.

The book is written in a pleasant re-
laxed style, with frequent historical excur-
sions that motivate the material and pro-
vide relief from the more technical passages.
Topics are developed in roughly chronolog-
ical order, starting with Fermat and visit-
ing the highlights of his work and that of
his successors Euler, Lagrange, and Gauss.
There are also “flashbacks” to the work of
Euclid, Diophantus, Fibonacci, and others
who helped pave the way for Fermat and
other modern number theorists. For exam-
ple, Chapter 1 proves quite ameaty theorem
of Fermat—that the area of an integer-sided
right-angled triangle cannot be a square—
with the help of a flashback to Euclid’s
treatment of Pythagorean triples.

Watkins’ narrative style of generally mov-
ing forward, but with flashbacks, seems very
effective. It allows the reader to reach ad-
vanced results quite quickly, but also to
relax occasionally by going back to a more
elementary level. Also, by allowing ideas
to be revisited, it reinforces key ideas by
returning to them again and again. For ex-
ample, we see Euclid’s proof that there are
infinitely many primes in Chapter 2, an ex-
tension of the idea to primes of the form
4n + 1 in the exercises in Chapter 6, and
a more sophisticated proof that there are
infinitely many primes (by Euler) in Chap-
ter 10. Likewise, the Fermat theorem in
Chapter 1 is revisited in Chapter 7, where
it is used to prove Fermat’s last theorem for
fourth powers.

The historical content is very attractively
presented and it will undoubtedly be a
bonus for most readers. As far as I can
see it is pretty accurate. The only slip I
noticed was on page 335: naming Nicolas
Bernoulli, rather than Daniel, as the discov-
erer of the so-called “Binet formula” for the
Fibonacci numbers. However, I must regis-
ter a mild protest against the lack of refer-
ences. There are no references to primary
historical sources (finding such a reference
would have picked up the Bernoulli error
above) and this is particularly annoying in
the case of quotations. For example, we are
told on page 253 that Gauss was amazed
that Archimedes did not develop a decimal,
or similar, notation for numbers, and that

Gauss said, “To what heights would sci-
ence now be raised if Archimedes had made
that discovery!” If true, this is a remarkable
nugget of information about Gauss—but no
source is given. (The quote also appears in
E.T. Bell’s Men of Mathematics, and Bell
gives no source either.)

The exercises are a particularly ad-
mirable feature. They are not just plen-
tiful, and with plentiful hints and solutions,
but well thought out and interesting. Very
often, substantial proofs are organized into
guided sequences of exercises. A notable ex-
ample is Zagier’s notorious “One-sentence
proof that every prime p ≡ 1 (mod 4) is a
sum of two squares,” which appeared in the
American Mathematical Monthly of 1990
and has caused many headaches since. On
page 162Watkins expands Zagier’s sentence
into an eight-step exercise, spread over two
and a half pages!

The book concludes with a brief introduc-
tion to the free Sage software—perhaps not
sufficient to allow readers to start program-
ming, but enough to whet the appetite—
some well-annotated suggestions for further
reading, and a useful pronunciation guide to
the names of prominent number theorists.
(We mathematicians tend to forget that the
pronunciation of Leibniz, Euler, and Jacobi
will not be obvious to our students.)

To sum up: this is a very rich, well-
organized, and highly readable book. It
should be accessible to a wide spectrum of
readers and is particularly suitable for a
first course in number theory.

JOHN STILLWELL

University of San Francisco

Numerical Methods with Worked Exam-
ples: MATLAB Edition. Second Edition.
By C. Woodford and C. Phillips. Springer, Dor-
drecht, 2012. $59.95. x+256 pp., hardcover.
ISBN 978-94-007-1365-9.

One approach in numerical methods text-
books, which may be considered the stan-
dard, is to present methods first with anal-
ysis followed by examples, either worked
out by the author(s) or left as exercises
to the reader. While this approach is cer-
tainly suitable for the reader whose inter-
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ests are principally in scientific computing,
the analysis may prove unnecessary or even
discouraging to other readers. Thus, Wood-
ford and Phillips focus more on the ap-
plication and implementation of numerical
methods instead of the analysis. Through-
out the book, they present material in what
they call the “problem-solution-discussion”
order. For the reader who is looking to in-
corporate numerical methods into their field
without diving too deep into the analysis,
the authors’ order of presentation is very
appealing.

The authors begin each chapter by out-
lining its purpose and/or aims and finish
each one with a summary of what was
learned, supported by numerous exercises
for the reader. In this way, the book is
nicely compartmentalized so that the reader
may pick and choose chapters of interest
without being confused by previously intro-
duced notation. The first chapter provides
a well-written introduction to MATLAB
and includes variable creation, condition-
als, flow control, and I/O. This ensures that
all readers can take advantage of the many
programming exercises provided through-
out the book.

The following two chapters are on lin-
ear and nonlinear equations. The authors
motivate each of these chapters effectively
with examples. Gaussian elimination, piv-
oting, Gauss–Seidel iteration, the bisection,
secant, and Newton’s methods are all nicely
covered, while the analysis is kept to a level
where the reader does not need linear alge-
bra experience, aside from familiarity with
matrices and vectors. The conjugate gradi-
entmethodmight have been worthmention-
ing after the authors introduced symmetric,
positive-definite systems; however, maybe
the corresponding analysis would have been
too heavy. Additionally, it is worthy of note
that there appears to be a typo in (2.45),
where the authors seek to demonstrate the
effect of round-off error by exchanging the
rows in a linear system. The line should
read 1.234x1 + 0.996x2 = 1.23 if “System
(1)” and “System (2)” are to be equivalent.

The book proceeds with a chapter on
interpolation, motivated by the need for in-
formation between measured values in an
experiment. The authors introduce poly-
nomial interpolation using either Newton

divided differences to construct the poly-
nomials or Neville’s method for tabulated
data. They state that higher-order polyno-
mials come with higher computation costs,
no guarantee of accuracy, and mention that
extrapolation can be a “risky proposition.”
However, some discussion about the oscil-
latory nature of higher-order polynomials
could have helped further illuminate the
breakdown of high-order polynomial inter-
polation. They finish the chapter with some
well worked through examples on splines,
linear least squares, and polynomial least
squares interpolation.

The next two chapters are on numerical
integration and differentiation. For integra-
tion, the authors stay true to their focus on
application over analysis by first present-
ing the trapezoid/trapezium and Simpson’s
rules with a graphical interpretation. Only
then do they introduce some analysis with
error terms to explain why the errors in
higher-order methods decrease faster. The
concepts of Gaussian and adaptive quadra-
tures are also introduced. For differentia-
tion, the analysis is deeper. Taylor series are
used to introduce finite differences for first
and second derivatives. The finite differ-
ences themselves, derivation of error terms,
and the use of Cauchy’s formula to avoid
machine precision issues (through reformu-
lating high-order derivatives into integrals)
are all very well written, albeit a slight
deviation from the authors’ focus on appli-
cation. There is also a typo worth noting on
page 121, where the remainder R1 should
be at most h2/2 times f ′′(Ψ) (not h/2 as
printed). Otherwise, the error R1/h would
appear to be proportional to 1 instead of h.

The next two chapters are on linear pro-
gramming and general optimization. The
linear programming chapter is thoroughly
motivated by word problems, including the
ubiquitous Traveling Salesman, that are
then translated into the appropriate form
for the reader. The authors cover the con-
cept of feasible regions and the details of the
simplex method with graphical descriptions
rather than rigorous proof, keeping the anal-
ysis to a minimum. Additionally, they cover
integer programming and decision making,
all accompanied by real-world examples, be-
fore moving to nonlinear optimization. This
section is equally well motivated by physical
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problems and their corresponding quanti-
ties to be optimized. Grid search methods
are generalized to the higher-dimensional
steepest descent and quasi-Newton meth-
ods. The authors close the chapter with
penalty and Lagrangian approaches to con-
strained optimization, while keeping the lin-
ear algebra and vector calculus analysis to
a minimum.

The authors include ODE numerical
methods in the following chapter. After a
nice introduction to how physical problems
lead to equations to be solved, the authors
cover both Euler andRunge–Kutta (second-
and fourth-order) methods for initial value
problems. The authors use computed error
tables instead of lengthy truncation error
analysis to show the order of the methods,
while mentioning how the error would be
determined. They include how to reformu-
late higher-order ODEs into first-order sys-
tems and how to then apply the methods.
The chapter is wrapped up with a discus-
sion on boundary value problems and how
shooting-type or finite difference methods
can be used. Although potentially outside
the scope of this book, it might have been
instructive to add some discussion on sta-
bility or step-size limitations.

The last two chapters are on numerical
methods for finding the spectrum of a ma-
trix and a light introduction to stochastic
methods. In introducing the power and QR
methods for finding eigenvectors and eigen-
values, the authors understandably dive a

little deeper into linear algebra than the
previous chapters (including a simple proof
of the linear independence of eigenspaces).
This comes only after a nice motivation of
why the spectrum is important in engineer-
ing, mainly dealing with resonance. The
stochastic methods chapter introduces the
concepts of distributions, expected value,
variance, covariance, and correlation, along
with how each one is computed. The au-
thors also include introductory random
number generation using the modulus oper-
ator and close the book with a description
of Monte Carlo integration.

The chapters of this book cover almost
everything that one would expect in a nu-
merical methods book. The authors hold
true to their endeavor to teach by exam-
ple, including numerous motivating prob-
lems and worked solutions. They routinely
choose graphical and intuitive motivation
over proof and theory to effectively keep the
reader focused on implementing the meth-
ods. The downside to this approach is that
some aspects of the methods are lost in
the balance of implementation with analy-
sis. Thus, while this approach might leave
some readers looking for more detailed ex-
planation or mathematical motivation, it
presents the book nicely to the reader more
interested in seeing the methods work than
understanding why they work.

CHRIS VOGL

University of Washington
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