Name Prof M

Section HP ___

Mathematics 1553
Midterm 3
Prof. Margalit
13 Friday 2015

1. Define eigenvector.

An eigenvector for a matrix A is a nonzero vector v so that Av is equal to a multiple of v.

Define diagonalizable.

A motrix is diagonalizable if it is similar to a diagonal matrix

2. Suppose that A is a 2×2 matrix and the associated linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ is orthogonal projection onto the y-axis. List the eigenvalues of A (if there are any) and give a basis for each corresponding eigenspace.

eigenval. basis for eigensp.
$$\{(?)\}$$

Suppose that A is a 2×2 matrix and that the associated linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ is rotation about the origin by $\pi/4$. List the eigenvalues of A (if there are any) and give a basis for each corresponding eigenspace.

No (real) eigenvalues

3. Answer yes/no/maybe for each question.

Suppose A is a 2×2 matrix that is row equivalent to the identity. Is A diagonalizable?

Maybe Yes Example:
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
No Example: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Suppose A is a 2×2 matrix with two distinct eigenvalues. Is A invertible?

Suppose A is a 2×2 matrix with only one eigenvalue, which is 1. Is A diagonalizable?

Suppose A is an $n \times n$ matrix that is similar to the identity matrix. Is A diagonalizable?

Yes

Suppose A is a 5×5 matrix with eigenvalues 1, 2, 3, and 4 and the dimension of the eigenspace for the eigenvalue 3 is 2. Is A diagonalizable?

Yes

4. What is the area of the parallelogram with vertices (-5,3), (0,5), (47,24), and (52,26)?

Compute the determinant of the following matrix:

$$\left(\begin{array}{ccccc}
0 & -2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)$$

5. Suppose that A is a 5×5 matrix with determinant 3.

Is A invertible?

What is det(-A)?

$$(-1)^5 \cdot 3 = -3$$

What is $\det(A^{-1})$?

What is $\det A^T$?

What is the determinant of the matrix obtained from A by replacing the first row with twice the first row plus the second row?

6. Consider the following matrix:

$$A = \left(\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array}\right)$$

Is A diagonalizable? If so, diagonalize it. If not, explain why not.

eigenvalues:
$$\det \begin{pmatrix} 1-\lambda & -1 \\ 0 & -\lambda \end{pmatrix} = \lambda^2 = \lambda = 0$$

 $\lambda = 0, \lambda = 1$

$$0$$
-eigenvector: $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} x_1 - x_2 = 0 \\ 0 = 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

1- eigenvector:
$$\begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix}$$
 $\sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \sim \times 2=0 \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}$$

7. Consider the following matrix:

$$A = \left(\begin{array}{cc} 7 & -6 \\ 1 & 2 \end{array}\right)$$

which satisfies

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}^{-1}$$

Give a formula for A^{100} . Your answer should be a single matrix, but the entries do not need to be simplified.

$$A^{100} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5^{100} & 0 \\ 0 & 4^{100} \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5^{100} & -2.5^{100} \\ -4^{100} & 3.4^{100} \end{pmatrix}$$

$$= \begin{pmatrix} 3.5^{100} - 2.4^{100} & -6.5^{100} + 6.4^{100} \\ 5^{100} - 4^{100} & -2.5^{100} + 3.4^{100} \end{pmatrix}$$

Which describes the linear transformation $T_A: \mathbb{R}^2 \to \mathbb{R}^2$?

- (a) It stretches (3,1) by 4 and (2,1) by 5.
- (b) It stretches (1,-1) by 4 and (-2,3) by 5.
- (c) It stretches (3,1) by 5 and (2,1) by 4.
- (d) It stretches (1,-1) by 5 and (-2,3) by 4.

What is the limit of the slope of $A^k(e_1)$ as k tends to infinity?

$$(a)$$
 1/3 \leftarrow slope of (3)

- (c) 1/2
- (d) -1/2

8. Find the eigenvalues of the following matrix:

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & -1 \end{array}\right)$$

Hint: When finding the characteristic polynomial, resist the urge to multiply everything out.

$$\det (A - 2\mathbf{I}) = 0$$

$$\det \begin{pmatrix} 1 - 2 & -1 & 0 \\ -1 & 2 - 2 & -1 \\ 0 & 1 & -1 - 2 \end{pmatrix} = (1 - 2) \left[(2 - 2)(1 - 2) + 1 \right] + \left[(1)(1 - 2) + 0 \right] = 0$$

$$= (1 - 2) \left[-2 - 2\lambda + 2\lambda + 2^{2} + 1 \right] + \left[1 + 2 \right] = 0$$

$$= (1 - 2) \left[\lambda^{2} - 2 - 1 \right] + \left[1 + 2 \right] = 0$$

$$= \lambda^{2} \times (-\lambda^{3} + 2^{2} + \lambda) + (+2) = 0$$

$$-\lambda^{3} + 2\lambda^{2} + \lambda = 0$$

$$-\lambda (2^{2} - 2\lambda - 1) = 0$$

$$= 0$$

$$\lambda = 2 \pm \sqrt{4 + 4} = 2 \pm \sqrt{8} = 1 \pm \sqrt{2}$$

$$\lambda = 0, 1 \pm \sqrt{2}$$

9. Find the adjugate of the matrix

$$A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

Remember that the adjugate of a matrix is the matrix whose ijth entry is the jith cofactor of A.

$$\begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

What is A^{-1} ?

$$\begin{pmatrix} 1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix}$$

10. Let B be a ball of radius 1 in \mathbb{R}^3 . The volume of B is $4\pi/3$. Let

$$A = \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 4 & 9 \\ 0 & 0 & 2 \end{array}\right)$$

What is the volume of $T_A(B)$?

Suppose that A is a matrix where the entries in each column add up to 1 (for example, the matrices in the Google Pagerank algorithm). Show that A has an eigenvalue equal to 1. Hint: find an eigenvector for A^T .

$$A^{T}(!)$$
 = (!)

 $\Rightarrow A^{T}$ has eigenvalue 1

 $\Rightarrow A$ has eigenvalue 1.