1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
 a) $A - B$
 b) AB
 c) $A^T B$
 d) $B^T A$
 e) A^2

2. Find all matrices B that satisfy
 \[
 \begin{pmatrix}
 1 & -3 \\
 -3 & 5
 \end{pmatrix} B = \begin{pmatrix}
 -3 & -11 \\
 1 & 17
 \end{pmatrix}.
 \]

3. a) If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
 b) Solve $AB = BC$ for A, assuming A, B, C are $n \times n$ matrices and B is invertible. Be careful!

4. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
 a) If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then each column of AB is a linear combination of the columns of A.
 b) If A and B are $n \times n$ and both are invertible, then the inverse of AB is $A^{-1}B^{-1}$.
 c) If A^T is not invertible, then A is not invertible.
 d) If A is an $n \times n$ matrix and the equation $Ax = b$ has at least one solution for each b in \mathbb{R}^n, then the solution is unique for each b in \mathbb{R}^n.
 e) If A and B are invertible $n \times n$ matrices, then $A + B$ is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.
 f) If A and B are $n \times n$ matrices and $ABx = 0$ has a unique solution, then $Ax = 0$ has a unique solution.

5. Suppose A is an invertible 3×3 matrix and
 \[
 A^{-1} e_1 = \begin{pmatrix}
 4 \\
 1 \\
 0
 \end{pmatrix}, \quad A^{-1} e_2 = \begin{pmatrix}
 3 \\
 2 \\
 0
 \end{pmatrix}, \quad A^{-1} e_3 = \begin{pmatrix}
 0 \\
 0 \\
 1
 \end{pmatrix}.
 \]
 Find A.

Math 1553 Worksheet §2.1, 2.2, 2.3