- Office Hours (for now) Monday 1-2 and Wed 3-4 (today!)
- If you want me to see your Piazza post, post to our group only
- MyMathLab is not required required
- Probably we will switch from T-Square to Canvas
- Recitation Friday no quiz this week

Background

What is \mathbb{R}^n ?

 $\mathbb{R}=$ denotes the set of all real numbers

Geometrically, this is the number line.

$$-3$$
 -2 -1 0 1 2 3

Definition

 \mathbb{R}^n = all ordered *n*-tuples of real numbers ($x_1, x_2, x_3, \ldots, x_n$).

Example

For n = 1 we have $\mathbb{R}^1 = \mathbb{R}$.

Example

When n = 2, we can think of \mathbb{R}^2 as the *plane*.

We can use the elements of \mathbb{R}^2 to <code>label</code> points on the plane, but \mathbb{R}^2 is not defined to be the plane!

Example

When n = 3, we can think of \mathbb{R}^3 as the *space* we (appear to) live in.

Again, we can use the elements of \mathbb{R}^3 to <code>label</code> points in space, but \mathbb{R}^3 is not defined to be space!

Example

We can think of the space of all *colors* as (a subset of) \mathbb{R}^3 :

all colors $(r, g, b) \subset \mathbb{R}^3$.

So what is \mathbb{R}^4 ? or \mathbb{R}^5 ? or \mathbb{R}^n ?

... go back to the *definition*: ordered *n*-tuples of real numbers

 $(x_1, x_2, x_3, \ldots, x_n).$

They're still "geometric" spaces, in the sense that our intuition for \mathbb{R}^2 and \mathbb{R}^3 sometimes extends to \mathbb{R}^n , but they're harder to visualize.

Last time we could have used \mathbb{R}^4 to label the amount of traffic (x, y, z, w) passing through four streets.

We'll make definitions and state theorems that apply to any \mathbb{R}^n , but we'll only draw pictures in \mathbb{R}^2 and \mathbb{R}^3 .

This is a 21 \times 21 QR code. We can also think of this as an element of $\mathbb{R}^n.$

How? Which n?

What about a greyscale image?

Background

Solving equations

Solving equations

What does it mean to solve an equation?

Example

2x = 10

Example $x^2 = 9$

Example

x + y = 1

What does the solution set of a linear equation look like?

x + y = 1 where x + y = 1 - xThis is called the **implicit equation** of the line.

What does the solution set of a linear equation look like?

x + y = 1 where x + y = 1 - xThis is called the **implicit equation** of the line.

We can write the same line in parametric form:

(x, y) = (t, 1-t) t in \mathbb{R} .

What does the solution set of a linear equation look like?

x + y + z = 1

What does the solution set of a linear equation look like?

x + y + z = 1 where a plane in space: This is the **implicit equation** of the plane.

What does the solution set of a linear equation look like?

 $x + y + z = 1 \xrightarrow{\text{www}}$ a plane in space: This is the **implicit equation** of the plane.

This plane also has a parametric form:

$$(x, y, z) = (t, w, 1-t-w) \qquad t, w \text{ in } \mathbb{R}.$$

Note you need two parameters t and w.

Aside What is a plane?

What does the solution set of a linear equation look like?

x + y + z + w = 1

What does the solution set of a linear equation look like?

 $x + y + z + w = 1 \xrightarrow{\text{output}} a$ "3-plane" in "4-space"...

Systems of Linear Equations

What does the solution set of a *system* of more than one linear equation look like?

Example

x - 3y = -32x + y = 8

What if there are more variables? More equations?

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$
$$x - 3y = 3$$

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$
$$x - 3y = 3$$

A system of equations with no solutions is called inconsistent.

In what other ways can two lines intersect?

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$
$$2x - 6y = -6$$

A fun puzzle

We saw that there are three ways that two lines can intersect in \mathbb{R}^2 : the intersection be be empty or a point or a line.

Question. In how many different ways can three lines intersect in the plane?

Question. In how many different ways can three planes intersect in space?