Announcements: Oct 2

- WebWork 1.8 & 1.9 due Wednesday
- Quiz on 1.7, 1.8, & 1.9 on Friday
- Midsemester reflections on Canvas
- Upcoming Office Hours
 - Me: Monday 1-2 and Wednesday 3-4, Skiles 234
 - Bharat: Tuesday 1:45-2:45, Skiles 230
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230

- Midterm 2 October 20
Learning goals

Sections 1.8-1.9

- How to find the matrix for a linear transformation
- Determine when a linear transformation is one-to-one, onto

Section 2.1

- How to multiply matrices
- Understand composition of linear transformations
Section 1.8-1.9
Linear Transformations II
Linear transformations are matrix transformations

Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is the function given by:

$$T \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x + y \\ y \\ x - y \end{pmatrix}$$

What is the standard matrix for T?

In fact, a function $\mathbb{R}^n \rightarrow \mathbb{R}^m$ is linear exactly when the coordinates are linear (linear combinations of the variables).
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^2 that stretches by 2 in the x-direction and 3 in the y-direction, and then reflects over the line $y = x$.
One-to-one

$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the image of at most one v in \mathbb{R}^n.

Theorem. Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a linear transformation with standard matrix A. Then the following are all equivalent:

- T is one-to-one
- the columns of A are linearly independent
- $Ax = 0$ has only the trivial solution
- A has a pivot in each column
- the range has dimension n

What can we say about the relative sizes of m and n if T is one-to-one?

Draw a picture of the range of a one-to-one mapping $\mathbb{R} \rightarrow \mathbb{R}^3$.
Onto

\(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is onto if the range of \(T \) is \(\mathbb{R}^m \), that is, each \(b \) in \(\mathbb{R}^m \) is the image of at least one \(v \) in \(\mathbb{R}^m \).

Theorem. Suppose \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a linear transformation with standard matrix \(A \). Then the following are all equivalent:

- \(T \) is onto
- the columns of \(A \) span \(\mathbb{R}^m \)
- \(A \) has a pivot in each row
- \(Ax = b \) is consistent for all \(b \) in \(\mathbb{R}^m \).

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is onto?

Give an example of an onto mapping \(\mathbb{R}^3 \rightarrow \mathbb{R} \).
Section 2.1
Matrix Operations
Terminology

Suppose A is an $m \times n$ matrix.

a_{ij} or A_{ij} is the ijth entry

a_{ii} are diagonal entries

diagonal matrix: all non-diagonal entries are 0

identity matrix: diagonal matrix with 1's on the diagonal

zero matrix: all entries are 0

the transpose of A is denoted A^T and has ij entry a_{ji}
Sums and Scalar Multiples

Same as for vectors: component-wise, so matrices must be same size to add.

\[A + B = \]

\[(A + B) + C = \]

\[r(A + B) = \]

\[(r + s)A = \]

\[(rs)A = \]

\[A + 0 = \]
Matrix Multiplication

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$ and

$$(AB)_{ij} = r_i \cdot b_j$$

where r_i is the ith row of A, and b_j is the jth column of B.

Or:
Matrix Multiplication and Linear Transformations

The composition $T \circ U$ means: do U then do T

Example. $T =$ projection to y-axis and $U =$ reflection about $y = x$ in \mathbb{R}^2

Question. What is the standard matrix for $T \circ U$?

Fact. The matrix for a composition of linear transformations is the product of the standard matrices.

Check by plugging in the e_i to $T \circ U$ and to the corresponding product.
Discussion Question

Are there nonzero matrices A and B with $AB = 0$?

1. Yes
2. No
Properties of Matrix Multiplication

- $A(BC) = (AB)C$
- $A(B + C) = AB + AC$
- $(B + C)A = BA + CA$
- $r(AB) = (rA)B = A(rB)$
- $(AB)^T = B^T A^T$
- $I_mA = A = AI_n$, where I_m is the $m \times m$ identity matrix.

Multiplication is associative because function composition is.

Warning!

- AB is not always equal to BA
- $AB = AC$ does not mean that $B = C$
- $AB = 0$ does not mean that A or B is 0