Announcements: Oct 4

- WebWork 1.8 & 1.9 due Wednesday
- Quiz on 1.7, 1.8, & 1.9 on Friday
- Thanks for doing Midsemester reflections - more soon!
- Upcoming Office Hours
 - Me: Wednesday 3-4, Skiles 234
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230
- Midterm 2 October 20
Learning goals

Section 2.2
- Definition and basic properties of matrix inverses
- Computing the inverse of a matrix
- Define elementary matrices and explain the relationship to row operations and inverses

Section 2.3
- Learn the invertible matrix theorem and how to apply it.
Section 2.2
The Inverse of a Matrix
Inverses

A = $n \times n$ matrix.

A is invertible if there is a matrix B with

\[AB = BA = I_n \]

B is called the inverse of A and is written A^{-1}

Example:

\[
\begin{pmatrix}
2 & 1 \\
1 & 1 \\
\end{pmatrix}^{-1} = \begin{pmatrix}
1 & -1 \\
-1 & 2 \\
\end{pmatrix}
\]
Inverses

Can you guess the inverse of \[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\]?

Find a 2×2 matrix that is not invertible.
The 2 × 2 Case

Let \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). Then \(\det(A) = ad - bc \) is the determinant of \(A \).

Fact. If \(\det(A) \neq 0 \) then \(A \) is invertible and \(A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \).

If \(\det(A) = 0 \) then \(A \) is not invertible.

Example. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = \)
Solving Linear Systems via Inverses

Fact. If A is invertible, then $Ax = b$ has exactly one solution...

Solve

\[\begin{align*}
2x + 3y + 2z &= 1 \\
x + 3z &= 1 \\
2x + 2y + 3z &= 1
\end{align*}\]

Using

\[
\begin{pmatrix}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{pmatrix}
^{-1} = \begin{pmatrix}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{pmatrix}
\]
Solving Linear Systems via Inverses

What if we change \(b \)?

\[
\begin{align*}
2x + 3y + 2z &= 1 \\
x + 3z &= 0 \\
2x + 2y + 3z &= 1
\end{align*}
\]

Using

\[
\begin{pmatrix}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{pmatrix}
^{-1}
=
\begin{pmatrix}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{pmatrix}
\]
Some Facts

Say that A and B are invertible $n \times n$ matrices.

- A^{-1} is invertible and $(A^{-1})^{-1} = A$
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

What is $(ABC)^{-1}$?
An Algorithm for Finding A^{-1}

Suppose $A = n \times n$ matrix.

- Row reduce $(A \mid I_n)$
- If reduction has form $(I_n \mid B)$ then A is invertible and $B = A^{-1}$.
- Otherwise, A is not invertible.

Exercise. Find

$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow$$
Why Does This Work?

First answer: we can think of the algorithm as simultaneously solving

\[Ax_1 = e_1\]
\[Ax_2 = e_2\]

and so on. But the columns of \(A^{-1} \) are \(A^{-1}e_i \), which is \(x_i \).

There is another explanation, which uses elementary matrices.
Elementary matrices

An elementary matrix, E, is one that differs by I_n by one row operation.

If E is an elementary matrix for some row operation, then EA differs from A by same row operation.

Why? Check for each type.

Fact. Elementary matrices are invertible.
Elementary matrices

Two matrices are row equivalent if they differ by row operations.

Observation. An $n \times n$ matrix A is invertible exactly when it is row equivalent to I_n. In this case, the sequence of row operations taking A to I_n also takes I_n to A^{-1}. This gives us a second explanation of the algorithm.
Section 2.3
Characterizations of Invertible Matrices
The Invertible Matrix Theorem

Say $A = n \times n$ matrix and $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

a) A is invertible
b) A is row equivalent to I_n
c) A has n pivots
d) $Ax = 0$ has only 0 solution
e) columns of A are linearly independent
f) T is one-to-one
g) $Ax = b$ is consistent for all b in \mathbb{R}^n
h) columns of A span \mathbb{R}^n
i) T is onto
j) A^T is invertible

Why are these statements all equivalent?
The Invertible Matrix Theorem

Say \(A = n \times n \) matrix and \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is the associated linear transformation. The following are equivalent.

a) \(A \) is invertible
b) \(A \) is row equivalent to \(I_n \)
c) \(A \) has \(n \) pivots
d) \(Ax = 0 \) has only 0 solution
e) columns of \(A \) are linearly independent
f) \(T \) is one-to-one
g) \(Ax = b \) is consistent for all \(b \) in \(\mathbb{R}^n \)
h) columns of \(A \) span \(\mathbb{R}^n \)
i) \(T \) is onto
j) \(A^T \) is invertible

Why are these statement all equivalent?
The Invertible Matrix Theorem

There are two kinds of square matrices, invertible and non-invertible matrices.

For invertible matrices, all of the conditions in the IMT hold. And for a non-invertible matrix, all of them fail to hold.
Example

Determine whether A is invertible. $A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix}$

It isn’t necessary to find the inverse. Instead, we may use the Invertible Matrix Theorem by checking whether we can row reduce to obtain three pivot columns, or three pivot positions.

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{pmatrix}$$

There are three pivot positions, so A is invertible by the IMT (statement c).
The Invertible Matrix Theorem

Poll
Which are true?

m) If A is invertible then the rows of A span \mathbb{R}^n

n) If $Ax = b$ has exactly one solution for all b in \mathbb{R}^n then A is row equivalent to the identity.

o) If A is invertible then A^2 is invertible

p) If A^2 is invertible then A is invertible
Identity transformation

The identity linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is the one where $T(v) = v$ for all v.

What is the standard matrix?
Invertible Functions

A function $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is invertible if there is a function $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$, so

$$T \circ U = \text{identity}$$

That is,

$$T \circ U(v) = v \text{ for all } v \in \mathbb{R}^n$$

Fact. Suppose $A = n \times n$ matrix and T is the matrix transformation. Then T is invertible as a function if and only if A is invertible. And in this case, the standard matrix for T^{-1} is A^{-1}.

Example. Counterclockwise rotation by $\pi/4$.
Which of the following linear transformations of \mathbb{R}^3 have invertible standard matrices?

- projection to xy-plane
- rotation about z-axis by π
- reflection through xy-plane