Announcements: Oct 4

- WebWork 1.8 & 1.9 due Wednesday
- Quiz on 1.7, 1.8, & 1.9 on Friday
- Thanks for doing Midsemester reflections more soon!

KORK ERKER ADA ADA KORA

- Upcoming Office Hours
	- ▶ Me: Wednesday 3-4, Skiles 234
	- ▶ Qianli: Wednesday 1-2, Clough 280
	- ▶ Arjun: Wednesday, 2:30-3:30, Skiles 230
	- \blacktriangleright Kemi: Thursday 9:30-10:30, Skiles 230
	- ▶ Martin: Friday 2-3, Skiles 230
- Midterm 2 October 20

Learning goals

Section 2.2

- Definition and basic properties of matrix inverses
- Computing the inverse of a matrix
- Define elementary matrices and explain the relationship to row operations and inverses

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Section 2.3

• Learn the invertible matrix theorem and how to apply it.

Section 2.2

The Inverse of a Matrix

KOKK@KKEKKEK E 1990

Inverses

 $A = n \times n$ matrix.

A is invertible if there is a matrix B with

$$
AB=BA=I_n
$$

 B is called the inverse of A and is written A^{-1}

Example:

$$
\left(\begin{array}{cc}2&1\\1&1\end{array}\right)^{-1}=\left(\begin{array}{cc}1&-1\\-1&2\end{array}\right)
$$

Inverses

Can you guess the inverse of
$$
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$
?

Find a 2×2 matrix that is not invertible.

The 2×2 Case

Let
$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
. Then $det(A) = ad - bc$ is the determinant of A.

Fact. If $\det(A) \neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)}$ $\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right).$

KO K K (D K A B K K B K A G K K K K K K K K

If $det(A) = 0$ then A is not invertible.

Example.
$$
\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} =
$$

Solving Linear Systems via Inverses

Fact. If A is invertible, then $Ax = b$ has exactly one solution...

Solve

$$
2x + 3y + 2z = 1
$$

$$
x + 3z = 1
$$

$$
2x + 2y + 3z = 1
$$

Using

$$
\left(\begin{array}{rrr}2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3\end{array}\right)^{-1} = \left(\begin{array}{rrr}-6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3\end{array}\right)
$$

Solving Linear Systems via Inverses

What if we change b ?

$$
2x + 3y + 2z = 1
$$

$$
x + 3z = 0
$$

$$
2x + 2y + 3z = 1
$$

Using

$$
\left(\begin{array}{rrr}2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3\end{array}\right)^{-1} = \left(\begin{array}{rrr}-6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3\end{array}\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Some Facts

Say that A and B are invertible $n \times n$ matrices.

- \bullet A^{-1} is invertible and $(A^{-1})^{-1}=A$
- \bullet AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \bullet A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

What is $(ABC)^{-1}$?

An Algorithm for Finding A^{-1}

Suppose $A = n \times n$ matrix.

- Row reduce $(A | I_n)$
- $\bullet\,$ If reduction has form $(I_n\,|\,B)$ then A is invertible and $B=A^{-1}.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• Otherwise, A is not invertible.

Exercise. Find
$$
\begin{pmatrix} 1 & 0 & 4 \ 0 & 1 & 2 \ 0 & -3 & -4 \end{pmatrix}^{-1}
$$

$$
\begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \ 0 & 1 & 2 & | & 0 & 1 & 0 \ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow
$$

Why Does This Work?

First answer: we can think of the algorithm as simultanenously solving

$$
Ax_1 = e_1
$$

$$
Ax_2 = e_2
$$

KO K K Ø K K E K K E K V K K K K K K K K K K

and so on. But the columns of A^{-1} are $A^{-1}e_i$, which is $x_i.$

There is another explanation, which uses elementary matrices.

Elementary matrices

An elementary matrix, E , is one that differs by I_n by one row operation.

If E is an elementary matrix for some row operation, then EA differs from A by same row operation.

Why? Check for each type.

Fact. Elementary matrices are invertible.

Elementary matrices

Two matrices are row equivalent if they differ by row operations.

Observation. An $n \times n$ matrix A is invertible exactly when it is row equivalent to I_n . In this case, the sequence of row operations taking A to I_n also takes I_n to $A^{-1}.$ This gives us a second explanation of the algorithm.

Section 2.3

Characterizations of Invertible Matrices

Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

KORKARYKERKER POLO

- a) A is invertible
- b) A is row equivalent to I_n
- c) A has n pivots
- d) $Ax = 0$ has only 0 solution
- e) columns of A are linearly independent
- f) T is one-to-one
- g) $Ax = b$ is consistent for all b in \mathbb{R}^n
- h) columns of A span \mathbb{R}^n
- i) T is onto
- j) A^T is invertible

Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익(연

- a) A is invertible
- b) A is row equivalent to I_n
- c) A has n pivots
- d) $Ax = 0$ has only 0 solution
- e) columns of A are linearly independent
- f) T is one-to-one
- g) $Ax = b$ is consistent for all b in \mathbb{R}^n
- h) columns of A span \mathbb{R}^n
- i) T is onto
- j) A^T is invertible

Why are these statement all equivalent?

There are two kinds of square matrices, invertible and non-invertible matrices.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

For invertible matrices, all of the conditions in the IMT hold. And for a non-invertible matrix, all of them fail to hold.

Example

Determine whether A is invertible.
$$
A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix}
$$

It isn't necessary to find the inverse. Instead, we may use the Invertible Matrix Theorem by checking whether we can row reduce to obtain three pivot columns, or three pivot positions.

$$
A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix} \backsim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix} \backsim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{pmatrix}
$$

There are three pivot positions, so A is invertible by the IMT (statement c).

KO K K Ø K K E K K E K V K K K K K K K K K K

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 $2Q$

Identity transformation

The identity linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is the one where $T(v) = v$ for all v.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

What is the standard matrix?

Invertible Functions

A function $T:\mathbb{R}^n\to \mathbb{R}^n$ is **invertible** if there is a function $U:\mathbb{R}^n\to \mathbb{R}^n$, so

 $T \circ U =$ identity

That is,

$$
T \circ U(v) = v \text{ for all } v \in \mathbb{R}^n
$$

Fact. Suppose $A = n \times n$ matrix and T is the matrix transformation. Then T is invertible *as a function* if and only if A is invertible. And in this case, the standard matrix for T^{-1} is $A^{-1}.$

KORKARYKERKER POLO

Example. Counterclockwise rotation by $\pi/4$.

Linear Transformations and Inverses

Which of the following linear transformations of \mathbb{R}^3 have invertible standard matrices? • projection to xy -plane • rotation about z -axis by π Poll

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

• reflection through xy -plane