Announcements: Oct 16

- Midterm 2 on Friday: 1.8, 1.9, 2.1, 2.2, 2.3, 2.8, & 2.9
- WebWork 2.8 & 2.9 due Wednesday
- Upcoming Office Hours
 - Me: Monday 1-2 and Wednesday 3-4, Skiles 234
 - Bharat: Tuesday 1:45-2:45, Skiles 230
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230
- Review Sessions TBA
Section 2.8

Subspaces of \mathbb{R}^n
Subspaces

A subspace of \mathbb{R}^n is a subset V with:

1. The zero vector is in V.
2. If u and v are in V, then $u + v$ is also in V.
3. If u is in V and c is in \mathbb{R}, then $cu \in V$.

These three things are the same:

- subspaces
- spans
- planes through 0
Column Space and Null Space

\[A = m \times n \text{ matrix.} \]

\[\text{Col}(A) = \text{column space of } A = \text{span of the columns of } A = \text{range of } T_A \]
\[= \text{subspace of } \mathbb{R}^m \]

\[\text{Nul}(A) = \text{null space of } A = \text{set of solutions to } Ax = 0 \]
\[= \text{subspace of } \mathbb{R}^n \]

Example. \[A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \]
Bases

\[V = \text{subspace of } \mathbb{R}^n \]

A basis for \(V \) is a set of vectors \(\{v_1, v_2, \ldots, v_k\} \) such that

1. \(V = \text{span}\{v_1, \ldots, v_k\} \)
2. the \(v_i \) are linearly independent

\[\dim(V) = \text{dimension of } V = k \]

Q. What is one basis for \(\mathbb{R}^2? \) \(\mathbb{R}^n? \)
Bases for $\text{Nul}(A)$ and $\text{Col}(A)$

Find bases for $\text{Nul}(A)$ and $\text{Col}(A)$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
Bases for $\text{Nul}(A)$ and $\text{Col}(A)$

In general:
- our usual parametric solution for $Ax = 0$ gives a basis for $\text{Nul}(A)$
- the pivot columns of A form a basis for $\text{Col}(A)$

Warning! Not the pivot columns of the reduced matrix.

Fact. If $A = n \times n$ matrix, then:

\[A \text{ is invertible} \iff \text{Col}(A) = \mathbb{R}^n \]
Bases for planes

Q. Find a basis for the plane $2x + 3y + z = 0$ in \mathbb{R}^3.
Section 2.8 Summary

- A **subspace** of \mathbb{R}^n is a subset V with:
 1. The zero vector is in V.
 2. If u and v are in V, then $u + v$ is also in V.
 3. If u is in V and c is in \mathbb{R}, then $cu \in V$.

- Subspaces are the same as spans are the same as planes through 0

- Two important subspaces $\text{Nul}(A)$ and $\text{Col}(A)$

- A **basis** for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that
 1. $V = \text{span}\{v_1, \ldots, v_k\}$
 2. the v_i are linearly independent

- The number of vectors in a basis for a subspace is the dimension.

- Find a basis for $\text{Nul}(A)$ by solving $Ax = 0$ in vector parametric form

- Find a basis for $\text{Col}(A)$ by taking pivot columns of A (not reduced A)
Section 2.9
Dimension and Rank
Bases as Coordinate Systems

\(V = \text{subspace of } \mathbb{R}^n \)

\(B = \{b_1, b_2, \ldots, b_k\} \) is a basis for \(V \)

\(x \) a vector in \(V \)

Then we can write \(x \) uniquely as

\[
x = c_1 b_1 + c_2 b_2 + \cdots + c_k b_k
\]

We write

\[
[x]_B = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}
\]

These are the B-coordinates of \(x \).
Bases as Coordinate Systems

Example

Say \(b_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \), \(b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \)

\(B = \{b_1, b_2\} \)

\(V = \text{Span}\{b_1, b_2\} \).

Q. Verify that \(B \) is a basis for \(V \) and find the \(B \)-coordinates of \(x = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix} \).
Bases as Coordinate Systems

Example

Say \(\mathbf{v}_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix} \)

\(V = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \).

Q. Find a basis for \(V \) and find the \(B \)-coordinates of \(\mathbf{x} = \begin{pmatrix} 4 \\ 11 \\ 8 \end{pmatrix} \).
Bases as Coordinate Systems

Consider the following basis for \mathbb{R}^2:

$$B = \left\{ \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$$

Use the figure to estimate the B-coordinates of $w = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ and $x = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.
Rank Theorem

\[
\text{rank}(A) = \text{dim Col}(A) = \# \text{ pivot columns} \\
\text{dim Nul}(A) = \# \text{ non - pivot columns}
\]

Rank-Nullity Theorem. \(\text{rank}(A) + \text{dim Nul}(A) = \#\text{cols}(A) \)

Example.
\[A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \]
If A and B are 3×3 matrices, and $\text{rank}(A) = \text{rank}(B) = 2$ then what are the possible values of $\text{rank}(AB)$?

a) 0
b) 1
c) 2
d) 3
e) 4
Two More Theorems

Basis Theorem
If V is a k-dimensional subspace of \mathbb{R}^n, then

- any k linearly independent vectors of V form a basis for V
- any k vectors that span V form a basis for V

In other words if a set has two of these three properties, it is a basis:

spans V, linearly independent, k vectors
Two More Theorems

Invertible Matrix Theorem

(a) A is invertible

:

(m) cols of A form a basis for \mathbb{R}^n

(n) $\text{Col}(A) = \mathbb{R}^n$

(o) $\dim \text{Col}(A) = n$

(p) $\text{rank}(A) = n$

(q) $\text{Nul}(A) = \{0\}$

(r) $\dim \text{Nul}(A) = 0$
Sections 2.8/9 Summary

- **A subspace** of \mathbb{R}^n is a non-empty subset closed under linear combinations.
- Two important subspaces are
 - $\text{Col}(A) = \text{span of columns of } A$.
 - $\text{Nul}(A) = (\text{solutions to } Ax = 0)$.
- **A basis** for a subspace W is a set of lin. ind. vectors that spans W.
 - To find the B–coords of u, solve $Bx = u$
- The **dimension** of a subspace is the number of elements in the basis.
- Use row reduction to find a basis for $\text{Col}(A)$ or $\text{Nul}(A)$.
 - Pivot columns of A give a basis for $\text{Col}(A)$.
 - Parametric form gives a basis for $\text{Nul}(A)$.

Rank-Nullity Theorem. $\text{rank}(A) + \text{dim Nul}(A) = \#\text{cols}(A)$

Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n. Then
- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.