Announcements: Oct 16

- Midterm 2 on Friday: 1.8, 1.9, 2.1, 2.2, 2.3, 2.8, & 2.9
- WebWork 2.8 & 2.9 due Wednesday
- Upcoming Office Hours
 - Me: Monday 1-2 and Wednesday 3-4, Skiles 234

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Bharat: Tuesday 1:45-2:45, Skiles 230
- Qianli: Wednesday 1-2, Clough 280
- Arjun: Wednesday, 2:30-3:30, Skiles 230
- Kemi: Thursday 9:30-10:30, Skiles 230
- Martin: Friday 2-3, Skiles 230
- Review Sessions TBA

Section 2.8 Subspaces of \mathbb{R}^n

Subspaces

A subspace of \mathbb{R}^n is a subset V with:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. If u is in V and c is in \mathbb{R} , then $cu \in V$.

These three things are the same:

- subspaces
- spans
- planes through 0

Column Space and Null Space

 $A = m \times n$ matrix.

Col(A) =column space of A = span of the columns of A = range of T_A = subspace of \mathbb{R}^m

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{split} \operatorname{Nul}(A) &= \operatorname{\mathsf{null}} \operatorname{space} \operatorname{of} A = \operatorname{set} \operatorname{of} \operatorname{solutions} \operatorname{to} Ax = 0 \\ &= \operatorname{subspace} \operatorname{of} \mathbb{R}^n \end{split}$$

Example. $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$

Bases

V =subspace of \mathbb{R}^n

A basis for V is a set of vectors $\{v_1, v_2, \dots, v_k\}$ such that 1. $V = \text{span}\{v_1, \dots, v_k\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. the v_i are linearly independent

 $\dim(V) =$ dimension of V = k

Q. What is one basis for \mathbb{R}^2 ? \mathbb{R}^n ?

Bases for Nul(A) and Col(A)

Find bases for Nul(A) and Col(A)

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Bases for Nul(A) and Col(A)

In general:

• our usual parametric solution for Ax = 0 gives a basis for Nul(A)

• the pivot columns of A form a basis for Col(A)

Warning! Not the pivot columns of the reduced matrix.

Fact. If $A = n \times n$ matrix, then:

A is invertible $\Leftrightarrow \operatorname{Col}(A) = \mathbb{R}^n$

Bases for planes

Q. Find a basis for the plane 2x + 3y + z = 0 in \mathbb{R}^3 .

Section 2.8 Summary

- A subspace of \mathbb{R}^n is a subset V with:
 - 1. The zero vector is in V.
 - 2. If u and v are in V, then u + v is also in V.
 - 3. If u is in V and c is in \mathbb{R} , then $cu \in V$.
- Subspaces are the same as spans are the same as planes through 0
- Two important subspaces Nul(A) and Col(A)
- A basis for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

1.
$$V = \operatorname{span}\{v_1, \ldots, v_k\}$$

- 2. the v_i are linearly independent
- The number of vectors in a basis for a subspace is the dimension.
- Find a basis for Nul(A) by solving Ax = 0 in vector parametric form
- Find a basis for $\operatorname{Col}(A)$ by taking pivot columns of A (not reduced A)

Section 2.9

Dimension and Rank

Bases as Coordinate Systems

 $V = \text{subspace of } \mathbb{R}^n$ $B = \{b_1, b_2, \dots, b_k\} \text{ is a basis for } V$ x a vector in V

Then we can write x uniquely as

$$x = c_1 b_1 + c_2 b_2 + \dots + c_k b_k$$

We write

$$[x]_B = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

These are the B-coordinates of x.

Bases as Coordinate Systems Example

Say
$$b_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$
 $B = \{b_1, b_2\}$
 $V = \operatorname{Span}\{b_1, b_2\}.$

Q. Verify that *B* is a basis for *V* and find the *B*-coordinates of $x = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bases as Coordinate Systems Example

Say
$$v_1 = \begin{pmatrix} 2\\3\\2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2\\8\\6 \end{pmatrix}$

$$V = \operatorname{Span}\{v_1, v_2, v_3\}.$$

Q. Find a basis for *V* and find the *B*-coordinates of $x = \begin{pmatrix} 4 \\ 11 \\ 8 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bases as Coordinate Systems

Consider the following basis for \mathbb{R}^2 :

Use the figure to estimate the B-coordinates of

$$w = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
 and $x = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rank Theorem

 $\operatorname{rank}(A) = \operatorname{dim} \operatorname{Col}(A) = \#$ pivot columns $\operatorname{dim} \operatorname{Nul}(A) = \#$ non – pivot columns

Rank-Nullity Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$

Example.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Poll

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Two More Theorems

Basis Theorem

If V is a k-dimensional subspace of \mathbb{R}^n , then

- any k linearly independent vectors of \boldsymbol{V} form a basis for \boldsymbol{V}
- any k vectors that span V form a basis for V

In other words if a set has two of these three properties, it is a basis:

spans V, linearly independent, k vectors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two More Theorems

Invertible Matrix Theorem

- (a) A is invertible
- (m) cols of A form a basis for ℝⁿ
 (n) Col(A) = ℝⁿ
 (o) dim Col(A) = n
 (p) rank(A) = n
 (q) Nul(A) = {0}
 (r) dim Nul(A) = 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sections 2.8/9 Summary

- A subspace of \mathbb{R}^n is a non-empty subset closed under linear combinations.
- Two important subspaces are
 - Col(A) = span of columns of A.
 - $\operatorname{Nul}(A) = ($ solutions to Ax = 0).
- A basis for a subspace W is a set of lin. ind. vectors that spans W.
 - To find the *B*-coords of u, solve Bx = u
- The dimension of a subspace is the number of elements in the basis.
- Use row reduction to find a basis for Col(A) or Nul(A).
 - Pivot columns of A give a basis for Col(A).
 - Parametric form gives a basis for Nul(A).

Rank-Nullity Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$

Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n . Then

- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.