Announcements: Oct 18

• Midterm 2 on Friday: 1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.8, & 2.9

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Upcoming Office Hours
 - Me: Wednesday 3-4, Skiles 234
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230
- Review Sessions
 - Martin, Thu 5:30, Skiles 254
 - Arjun, Thu 8:30-9:30, Skiles 249

Section 2.8 Summary

- A subspace of \mathbb{R}^n is a subset V with:
 - 1. The zero vector is in V.
 - 2. If u and v are in V, then u + v is also in V.
 - 3. If u is in V and c is in \mathbb{R} , then $cu \in V$.
- Subspaces are the same as spans are the same as planes through 0
- Two important subspaces Nul(A) and Col(A)
- A basis for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

1.
$$V = \operatorname{span}\{v_1, \ldots, v_k\}$$

- 2. the v_i are linearly independent
- The number of vectors in a basis for a subspace is the dimension.
- Find a basis for Nul(A) by solving Ax = 0 in vector parametric form
- Find a basis for $\operatorname{Col}(A)$ by taking pivot columns of A (not reduced A)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Section 2.9

Dimension and Rank

Bases as Coordinate Systems

 $V = \text{subspace of } \mathbb{R}^n$ $B = \{b_1, b_2, \dots, b_k\} \text{ is a basis for } V$ x a vector in V

Then we can write x uniquely as

$$x = c_1 b_1 + c_2 b_2 + \dots + c_k b_k$$

We write

$$x]_B = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

These are the B-coordinates of x.

Bases as Coordinate Systems

Say $v_1 = \begin{pmatrix} 2\\3\\2 \end{pmatrix}$, $v_2 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2\\8\\6 \end{pmatrix}$

$$V = \operatorname{Span}\{v_1, v_2, v_3\}.$$

Q. Find a basis for *V* and find the *B*-coordinates of $x = \begin{pmatrix} 4 \\ 11 \\ 8 \end{pmatrix}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bases as Coordinate Systems

Consider the following basis for \mathbb{R}^2 :

Use the figure to estimate the B-coordinates of

$$w = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
 and $x = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Rank Theorem

 $\operatorname{rank}(A) = \operatorname{dim} \operatorname{Col}(A) = \#$ pivot columns $\operatorname{dim} \operatorname{Nul}(A) = \#$ non – pivot columns

Rank-Nullity Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$

Example.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Two More Theorems

Basis Theorem

If V is a k-dimensional subspace of \mathbb{R}^n , then

- any k linearly independent vectors of \boldsymbol{V} form a basis for \boldsymbol{V}
- any k vectors that span V form a basis for V

In other words if a set has two of these three properties, it is a basis:

spans V, linearly independent, k vectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two More Theorems

Invertible Matrix Theorem

- (a) A is invertible
- (m) cols of A form a basis for ℝⁿ
 (n) Col(A) = ℝⁿ
 (o) dim Col(A) = n
 (p) rank(A) = n
 (q) Nul(A) = {0}
 (r) dim Nul(A) = 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sections 2.8/9 Summary

- A subspace of \mathbb{R}^n is a non-empty subset closed under linear combinations.
- Two important subspaces are
 - Col(A) = span of columns of A.
 - $\operatorname{Nul}(A) = ($ solutions to Ax = 0).
- A basis for a subspace W is a set of lin. ind. vectors that spans W.
 - To find the B-coords of u, solve Bx = u
- The dimension of a subspace is the number of elements in the basis.
- Use row reduction to find a basis for Col(A) or Nul(A).
 - Pivot columns of A give a basis for Col(A).
 - Parametric form gives a basis for Nul(A).

Rank-Nullity Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$

Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n . Then

- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.

Invertibility and linear transformations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Extra: Which are one-to-one, onto? Find the matrices.

Column space and Null space

Suppose that A and B have the same column space and the same null space. Must it be true that A = B? Explain your answer.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Important terms

- linearly independent
- linear transformation
- one-to-one
- onto
- invertibility (for a matrix and a linear transformation)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- subspace
- basis
- dimension
- column space
- null space

Some Questions

Suppose A is a square matrix and $U(v) = A^T v$ is onto. What is Nul A?

Suppose A is a 4×3 matrix and the range of T(v) = Av is a line. What is the dimension of Nul A?

Suppose A is a 4×5 matrix. Can it be that $\operatorname{Col} A$ is \mathbb{R}^4 ?

Suppose A is a 5×6 matrix. Can T(v) = Av be one-to-one? onto?

Find an example of a matrix whose null space is the span of (1,1,1) in \mathbb{R}^3 .