Announcements: Oct 30

- We need volunteers to do MatLab calculations in class today get ready!
- WebWork 3.1, 3.2 due Wednesday
- Quiz 3.1, 3.2 Friday
- Midterm 3 on Friday Nov 17
- Upcoming Office Hours
 - Me: Monday 1-2 and Wednesday 3-4, Skiles 234
 - Bharat: Tuesday 1:45-2:45, Skiles 230
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230

Other sources of help:

- Math Lab, Clough 280, Mon Thu 12-6
- Tutoring: http://www.successprograms.gatech.edu/tutoring

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Where are we?

Remember:

Almost every engineering problem, no matter how huge, can be reduced to linear algebra: $Ax = b \quad \text{or} \\ Ax = \lambda x$

We have said most of what we are going to say about the first problem. We now begin in earnest on the second problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Question from Biology

In a population of rabbits...

- half of the new born rabbits survive their first year
- of those, half survive their second year
- the maximum life span is three years
- rabbits produce 0, 6, 8 rabbits in their first, second, and third years
- If I know the population one year, what is the population the next year?

Now choose some starting population vector u = (f, s, t) and choose some number of years N. What is the new population after N years? N + 1 years?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Use a computer to find the actual numbers.

Eigenvectors and Eigenvalues

Suppose A is an $n \times n$ matrix and there is a $v \neq 0$ in \mathbb{R}^n and λ in \mathbb{R} so that

 $Av = \lambda v$

then v is called an eigenvector for A, and λ is the corresponding eigenvalue.

eigen = characteristic

So Av points in the same direction as v.

This the the most important definition in the course.

Eigenvectors and Eigenvalues Examples

$$A = \begin{pmatrix} 0 & 6 & 8\\ 1/2 & 0 & 0\\ 0 & 1/2 & 0 \end{pmatrix}, \quad v = \begin{pmatrix} 32\\ 8\\ 2 \end{pmatrix}, \quad \lambda = 2$$

$$A = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \lambda = 4$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

How do you check?

Eigenvectors and Eigenvalues

Confirming eigenvectors

Which of
$$\begin{pmatrix} 1\\1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\-1 \end{pmatrix}$, $\begin{pmatrix} -1\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\0 \end{pmatrix}$ are eigenvectors of $\begin{pmatrix} 1&1\\1&1 \end{pmatrix}$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What are the eigenvalues?

Eigenvectors and Eigenvalues

Confirming eigenvalues

Confirm that
$$\lambda = 3$$
 is an eigenvalue of $A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$.

What is a general procedure for finding eigenvalues?

Eigenspaces

Let A be an $n \times n$ matrix. The set of eigenvectors for a given eigenvalue λ of A (plus the zero vector) is a subspace of \mathbb{R}^n called the λ -eigenspace of A.

Why is this a subspace?

Fact. λ -eigenspace for $A = \operatorname{Nul}(A - \lambda I)$

Example. Find the eigenspaces for $\lambda = 2$ and $\lambda = -1$ and sketch.

$$\left(\begin{array}{cc} 5 & -6 \\ 3 & -4 \end{array}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Eigenspaces Bases

Find a basis for the 2-eigenspace:

$$\left(\begin{array}{rrr} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

And invertibility

Fact. A invertible $\Leftrightarrow 0$ is not an eigenvalue of A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why?

Triangular matrices

Fact. The eigenvalues of a triangular matrix are the diagonal entries.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why?

Distinct eigenvalues

Fact. If $v_1 \ldots v_k$ are distinct eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots \lambda_k$, then $\{v_1, \ldots, v_k\}$ are linearly independent.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why?

Eigenvalues geometrically

If v is an eigenvector of A then that means v and Av are scalar multiples, i.e. they lie on a line.

Suppose A corresponds to reflection about the line y = -x. What are the eigenvalues/eigenvectors of A?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Summary

• If $v \neq 0$ and $Av = \lambda v$ then λ is an eigenvector of A with eigenvalue λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The number λ is an eigenvalue of $A \leftrightarrow \det(A \lambda I) = 0$
- The λ -eigenspace of A is the solution to $(A \lambda I)x = 0$
- We can often see eigenvectors without doing calculations