Announcements: Nov 15

- Midterm 3 on Friday
- Upcoming Office Hours
 - Me: Wednesday 1-2, Skiles 234
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230

Other help:
 - Math Lab, Clough 280, Mon - Thu 12-6
 - Tutoring: http://www.successprograms.gatech.edu/tutoring
 - Group Tutoring
 - Sun Nov 19, 2-4, Clough 102

Review Sessions
 - Martin Thursday 7-9 Skiles 257
 - Qianli Thursday 1-2 Skiles 271
A matrix with an eigenvector

Find the eigenvectors and eigenvalues of:

\[A = \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix} \]
What do complex eigenvalues mean?

Theorem. Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ (where $b \neq 0$) and associated eigenvector v. Then

$$A = CBC^{-1}$$

where

$$C = (\text{Re} \ v \quad \text{Im} \ v) \quad \text{and} \quad B = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Example. Find C and B when

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$$

By how much does B rotate/scale?
A 3×3 example

Find the block diagonalization of:

$$A = \begin{pmatrix} 4 & -3 & 3 \\ 3 & 4 & -2 \\ 0 & 0 & 2 \end{pmatrix}$$

What does A do to \mathbb{R}^3? Draw a picture!
Summary of complex eigenvalues

- An $n \times n$ matrix has n complex eigenvalues (with multiplicity).
- Complex eigenvalues/eigenvectors come in conjugate pairs.
- If a matrix has a complex eigenvalue, then there is a plane in \mathbb{R}^n on which A is similar to a scale/rotation.
- Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ (where $b \neq 0$) and associated eigenvector v. Then

$$A = CB C^{-1}$$

where

$$C = (\text{Re} \, v \quad \text{Im} \, v) \quad \text{and} \quad B = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

So the amount of rotation/scaling is determined by λ.
- The 3×3 case is similar.
Chapter 6
Orthogonality and Least Squares
Section 6.1

Inner Product, Length, and Orthogonality
Where are we?

We have learned to solve $Ax = b$ and $Av = \lambda v$.

We have one more main goal.

What if we can’t solve $Ax = b$? How can we solve it as closely as possible?

The answer relies on orthogonality.
Outline

- Dot products
- Dot products and orthogonality
- Orthogonal projection
- A formula for projection onto a line
- Orthogonal complements
Dot product

Say $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ are vectors in \mathbb{R}^n

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$

$$= u_1 v_1 + \cdots + u_n v_n$$

$$= u^T v$$

Example. Find $(1, 2, 3) \cdot (4, 5, 6)$.
Dot product

Some properties of the dot product

- \(u \cdot v = v \cdot u \)
- \((u + v) \cdot w = u \cdot w + v \cdot w \)
- \((cu) \cdot v = c(u \cdot v) \)
- \(u \cdot u \geq 0 \)
- \(u \cdot u = 0 \iff u = 0 \)
Dot product
and Length

Let v be a vector in \mathbb{R}^n

$$\|v\| = \sqrt{v \cdot v}$$

= length (or norm) of v

Why? Pythagorean Theorem

Fact. $\|cv\| = c\|v\|$

v is a unit vector of $\|v\| = 1$

Problem. Find the unit vector in the direction of $(1, 2, 3, 4)$.

Problem. Find the distance between $(1, 1, 1)$ and $(1, 4, -3)$.
Orthogonality

Fact. \(u \perp v \iff u \cdot v = 0 \)

Why? Pythagorean theorem again!

\[
\begin{align*}
u \perp v & \iff \|u\|^2 + \|v\|^2 = \|u - v\|^2 \\
& \iff u \cdot u + v \cdot v = u \cdot u - 2u \cdot v + v \cdot v \\
& \iff u \cdot v = 0
\end{align*}
\]

Problem. Find a vector in \(\mathbb{R}^3 \) orthogonal to \((1, 2, 3)\).
Orthogonal complements

\[W = \text{subspace of } \mathbb{R}^n \]
\[W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in W \} \]

Question. What is the orthogonal complement of a line in \(\mathbb{R}^3 \)?

Facts.

1. \(W^\perp \) is a subspace of \(\mathbb{R}^n \)
2. \((W^\perp)^\perp = W \)
3. \(\text{dim } W + \text{dim } W^\perp = n \)
4. If \(W = \text{Span}\{w_1, \ldots, w_k\} \) then
 \[W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i \} \]
5. The intersection of \(W \) and \(W^\perp \) is \(\{0\} \).
Orthogonal complements
Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1)\}$. Find the equation of the plane W^\perp.

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find the equation of the line W^\perp.
Orthogonal complements
Finding them

Problem. Let \(W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\} \). Find the equation of the line \(W^\perp \).

Theorem. \(A = m \times n \) matrix

\[
(\text{Row} A)^\perp = \text{Nul} \ A
\]

Why? \(Ax = 0 \iff x \text{ is orthogonal to each row of } A \)
Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n. Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = w + w'$$

where $w \in W$ and $w' \in W^\perp$.

Why? Say that $w_1 + w'_1 = w_2 + w'_2$ where w_1 and w_2 are in W and w'_1 and w'_2 are in W^\perp. Then $w_1 - w_2 = w'_2 - w'_1$. But the former is in W and the latter is in W^\perp, so they must both be equal to 0.

Next time: Find w and w'.
Summary

- Basic properties of dot product:
 - $u \cdot u = \|u\|^2$
 - $u \cdot v = 0 \iff u \perp v$

- Orthogonal complements:
 - $W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in W \}$
 - $(\text{Row } A)^\perp = \text{Nul } A$ (this is how you find W^\perp)
 - Every vector v in \mathbb{R}^n can be written uniquely as $v = w + w'$ with w in W and $w' \in W^\perp$