Announcements: Nov 15

- Midterm 3 on Friday
- Upcoming Office Hours
 - Me: Wednesday 1-2, Skiles 234
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230

Other help:

- Math Lab, Clough 280, Mon Thu 12-6
- Tutoring: http://www.successprograms.gatech.edu/tutoring

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Group Tutoring
 - ► Sun Nov 19, 2-4, Clough 102

Review Sessions

- Martin Thursday 7-9 Skiles 257
- Qianli Thursday 1-2 Skiles 271

Section 5.5 Complex Eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A matrix with an eigenvector

Find the eigenvectors and eigenvalues of:

$$A = \left(\begin{array}{cc} 1 & -2\\ 1 & 3 \end{array}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What do complex eigenvalues mean?

Theorem. Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ (where $b \neq 0$) and associated eigenvector v. Then

$$A = CBC^{-1}$$

where

$$C = (\operatorname{Re} v \quad \operatorname{Im} v) \text{ and } B = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Example. Find C and B when

$$A = \left(\begin{array}{rr} 1 & -2\\ 1 & 3 \end{array}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By how much does B rotate/scale?

A 3×3 example

Find the block diagonalization of:

$$A = \left(\begin{array}{rrrr} 4 & -3 & 3\\ 3 & 4 & -2\\ 0 & 0 & 2 \end{array}\right)$$

What does A do to \mathbb{R}^3 ? Draw a picture!

Summary of complex eigenvalues

- An $n \times n$ matrix has n complex eigenvalues (with multiplicity).
- Complex eigenvalues/eigenvectors come in conjugate pairs.
- If a matrix has a complex eigenvalue, then there is a plane in \mathbb{R}^n on which A is similar to a scale/rotation.
- Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a bi$ (where $b \neq 0$) and associated eigenvector v. Then

$$A = CBC^{-1}$$

where

$$C = (\operatorname{Re} v \quad \operatorname{Im} v) \text{ and } B = \left(egin{array}{cc} a & -b \\ b & a \end{array}
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So the amount of rotation/scaling is determined by $\lambda.$ $\bullet~$ The 3×3 case is similar.

Chapter 6 Orthogonality and Least Squares

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Section 6.1 Inner Product, Length, and Orthogonality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Where are we?

We have learned to solve Ax = b and $Av = \lambda v$.

We have one more main goal.

What if we can't solve Ax = b? How can we solve it as closely as possible?

イロト 不得 トイヨト イヨト

3

The answer relies on orthogonality.

Outline

- Dot products
- Dot products and orthogonality
- Orthogonal projection
- A formula for projection onto a line

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Orthogonal complements

Dot product

Say $u = (u_1, \dots, u_n)$ and $v = (v_1, \dots, v_n)$ are vectors in \mathbb{R}^n

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$
$$= u_1 v_1 + \dots + u_n v_n$$
$$= u^T v$$

Example. Find $(1, 2, 3) \cdot (4, 5, 6)$.

Dot product

Some properties of the dot product

•
$$u \cdot v = v \cdot u$$

• $(u + v) \cdot w = u \cdot w + v \cdot w$
• $(cu) \cdot v = c(u \cdot v)$
• $u \cdot u \ge 0$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

•
$$u \cdot u = 0 \Leftrightarrow u = 0$$

Dot product

and Length

Let v be a vector in \mathbb{R}^n

$$|v|| = \sqrt{v \cdot v}$$

= length (or norm) of v

Why? Pythagorean Theorem

Fact. $\|cv\| = c\|v\|$

v is a unit vector of $\|v\|=1$

Problem. Find the unit vector in the direction of (1, 2, 3, 4).

Problem. Find the distance between (1, 1, 1) and (1, 4, -3).

・ロト・4回ト・4回ト・4回ト・回・99(や)

Orthogonality

Fact.
$$u \perp v \Leftrightarrow u \cdot v = 0$$

Why? Pythagorean theorem again!

$$u \perp v \Leftrightarrow ||u||^2 + ||v||^2 = ||u - v||^2$$

$$\Leftrightarrow u \cdot u + v \cdot v = u \cdot u - 2u \cdot v + v \cdot v$$

$$\Leftrightarrow u \cdot v = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Problem. Find a vector in \mathbb{R}^3 orthogonal to (1, 2, 3).

Orthogonal complements

 $W = \text{subspace of } \mathbb{R}^n$ $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W\}$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ?

Facts.

1. W^{\perp} is a subspace of \mathbb{R}^n

$$2. \ (W^{\perp})^{\perp} = W$$

3. dim $W + \dim W^{\perp} = n$

4. If
$$W = \text{Span}\{w_1, \dots, w_k\}$$
 then
 $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i$

5. The intersection of W and W^{\perp} is $\{0\}$.

Orthogonal complements

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1)\}$. Find the equation of the plane W^{\perp} .

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find the equation of the line W^{\perp} .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Orthogonal complements

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find the equation of the line W^{\perp} .

Theorem. $A = m \times n$ matrix

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = w + w'$$

where $w \in W$ and $w' \in W^{\perp}$.

Why? Say that $w_1 + w'_1 = w_2 + w'_2$ where w_1 and w_2 are in W and w'_1 and w'_2 are in W^{\perp} . Then $w_1 - w_2 = w'_2 - w'_1$. But the former is in W and the latter is in W^{\perp} , so they must both be equal to 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Next time: Find w and w'.

Summary

- Basic properties of dot product:
 - $\blacktriangleright \ u \cdot u = \|u\|^2$
 - $\blacktriangleright \ u \cdot v = 0 \Leftrightarrow u \perp v$
- Orthogonal complements:
 - $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$
 - $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ (this is how you find W^{\perp})
 - \blacktriangleright Every vector v in \mathbb{R}^n can be written uniquely as v=w+w' with w in W and $w'\in W^\perp$