Announcements: Nov 15

- Come to the front to pick up your Midterm
- Final Exam on Tuesday Dec 12 6:00-8:50pm
- Upcoming Office Hours
	- \blacktriangleright Me: Monday 1-2
	- \blacktriangleright Bharat: Tuesday 1:45-2:45, Skiles 230

Other help:

- \blacktriangleright Math Lab, Clough 280, Mon Thu 12-6
- \blacktriangleright Tutoring: http://www.successprograms.gatech.edu/tutoring

KORKARYKERKER POLO

 \triangleright CAS Study Session Dec 6 Clough 144/152

Grades:

- \blacktriangleright Midterm 3 average: 74%
- \triangleright Overall course average: 85%

Chapter 6 Orthogonality and Least Squares

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Where are we?

We have learned to solve $Ax = b$ and $Av = \lambda v$.

We have one more main goal.

What if we can't solve $Ax = b$? How can we solve it as closely as possible?

イロメ イ団メ イ君メ イ君メー

 \mathbb{R}^{n-1} 2990

The answer relies on orthogonality.

Orthogonal complements

$$
\begin{array}{l} W = \text{subspace of } \mathbb{R}^n \\ W^\perp = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \} \end{array}
$$

Facts.

- 1. W^{\perp} is a subspace of \mathbb{R}^{n}
- 2. $(W^{\perp})^{\perp} = W$
- 3. dim $W + \dim W^{\perp} = n$
- 4. If $W = \text{Span}\{w_1, \ldots, w_k\}$ then $W^{\perp}=\{v \text{ in } \mathbb{R}^n \mid v\perp w_i \text{ for all } i\}$
- 5. The intersection of W and W^{\perp} is $\{0\}$.

Theorem. $A = m \times n$ matrix

$$
(\text{Row}A)^{\perp} = \text{Nul}\,A
$$

KORKARYKERKER POLO

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector y in \mathbb{R}^n can be written uniquely as

 $y_W + y_{W^{\perp}}$

where $y_W \in W$ and $y_{W^{\perp}} \in W^{\perp}$.

Orthogonal Sets

A set of vectors is orthogonal if each pair of vectors is orthogonal. It is orthonormal if in addition each vector is a unit vector.

Example.

$$
B = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}
$$

Fact. An orthogonal set of nonzero vectors is linearly independent.

Why? Suppose $c_iu_1 + c_2u_2 + c_3u_3 = 0$. Dot both sides with u_1 .

Section 6.2/6.3 Orthogonal Projections

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Outline

- Orthogonal projections
- A formula for projecting onto a line
- A formula for projecting onto any subspace

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• Projections and best possible solutions

Let W be a subspace of \mathbb{R}^n and y a vector in \mathbb{R}^n .

 $proj_W(y)$ = orthogonal projection to W of y

KO K K Ø K K E K K E K V K K K K K K K K K

If we write y as $y_W + y_{W^{\perp}}$ then $\text{proj}_W(y) = y_W$.

Orthogonal projection onto a line

$$
Say W = Span{u}.
$$

Fact.
$$
proj_W(y) = \frac{y \cdot u}{u \cdot u} u
$$

Why?
$$
(y - cu) \cdot u = 0 \Leftrightarrow c = \frac{y \cdot u}{u \cdot u}
$$

As above, $y - \text{proj}_W(y)$ lies in W^{\perp} .

Problem. Let $u = (1, 2)$ and $W = \langle u \rangle$. Let $y = (1, 1)$. Write y as $y_W + y_{W^{\perp}}$.

KORKARRA ERKER SAGA

Many applications, including:

 $2Q$

Projecting onto any subspace

Fact. Say W a subspace of \mathbb{R}^n and y in \mathbb{R}^n . We can write y uniquely as:

$$
y=y_W+y_{W^\perp}
$$

with y_W in W and $y_{W\perp}$ in W^{\perp} .

Moreover, if $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for W then

$$
y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k
$$

This y_W is $proj_W(y)$.

Problem. Use the formula to project $(1, 2, 3)$ to the xy -plane.

KELK KØLK VELKEN EL 1990

Projecting onto any subspace

If $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for W then

$$
y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k
$$

This y_W is $proj_W(y)$.

Problem. Let
$$
W = \text{Span}\left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}
$$
 and $y = e_1$. Find yw .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Matrices for projections

Find A so that $T(v) = Av$ is orthogonal projection onto

$$
W = \text{Span}\left\{ \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \right\}
$$

KO KKOKKEKKEK E DAG

Suppose $T(v) = Av$ is orthogonal projection onto a plane in $\mathbb{R}^3.$ What is A^2 equal to? 1. A 2. A^{-1} $3. -A$ 4. 0 5. I_n 6. $-I_n$ Poll

KORK EXTERNE PROVIDE

While you are at it: What are the eigenvalues of A ?

Orthogonal bases

Finding coordinates with respect to orthogonal bases

Fact. Say that $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n and say that y is in W . Then

$$
y = c_1 u_1 + \dots + c_k u_k
$$

where

$$
c_i = \frac{y \cdot u_i}{u_i \cdot u_i}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Same formula as before! Why?

Orthogonal bases

Finding coordinates with respect to orthogonal bases

Fact. Say that $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n and say that y is in W . Then

$$
y = c_1 u_1 + \dots + c_k u_k
$$

where

$$
c_i = \frac{y \cdot u_i}{u_i \cdot u_i}
$$

Problem. Find the B-coordinates of $(6,1)$ where

$$
B = \left\{ \left(\begin{array}{c} 1 \\ 2 \end{array} \right), \left(\begin{array}{c} -4 \\ 2 \end{array} \right) \right\}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Orthogonal bases

Finding coordinates with respect to orthogonal bases

Fact. Say that $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n and say that y is in W . Then

$$
y = c_1 u_1 + \dots + c_k u_k
$$

where

$$
c_i = \frac{y \cdot u_i}{u_i \cdot u_i}
$$

Problem. Find the B-coordinates of $(6, 1, -8)$ where

$$
B = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}
$$

Best approximation

 $W=$ subspace of \mathbb{R}^n

Fact. The projection y_W is the point in W closest to y. In other words:

$$
||y - y_W|| < ||y - w||
$$

for any w in W other than y_W .

Why? Make a right triangle between $y, y - y_W$, and $y_W - w$.

Best approximation

Problem. Find the distance from e_1 to

$$
W = \text{Span}\left\{ \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \right\}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Summary

- $proj_W(y)$ = orthogonal projection to W of y
- If $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for W then

$$
y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k
$$

This y_W is $proj_W(y)$.

- We find the matrix for projections in the usual way (project the e_i).
- If y is already in W then this gives the B-coordinates.
- The projection of y to W is the closest point in W to y .

KORKAR KERKER SAGA