Announcements: Nov 27

- CIOS open
- WebWork 6.1, 6.2, 6.3 due Wednesday
- WebWork 6.4 and 6.5 not due but on the final
- No quiz on Friday
- Final Exam on Tuesday Dec 12 6:00-8:50pm
- Upcoming Office Hours
	- ► Me: Monday 1-2 and Wednesday 3-4, Skiles 234
	- \blacktriangleright Bharat: Tuesday 1:45-2:45, Skiles 230
	- ▶ Qianli: Wednesday 1-2, Clough 280
	- \blacktriangleright Arjun: Wednesday, 2:30-3:30, Skiles 230
	- \blacktriangleright Kemi: Thursday 9:30-10:30, Skiles 230
	- ▶ Martin: Friday 2-3, Skiles 230

Other help:

- \blacktriangleright Math Lab, Clough 280, Mon Thu 12-6
- \blacktriangleright Tutoring: http://www.successprograms.gatech.edu/tutoring
- \triangleright CAS Study Session Dec 6 Clough 144/152

Chapter 6 Orthogonality and Least Squares

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Where are we?

We have learned to solve $Ax = b$ and $Av = \lambda v$.

We have one more main goal.

What if we can't solve $Ax = b$? How can we solve it as closely as possible?

イロメ イ団メ イ君メ イ君メー

 \mathbb{R}^{n-1} 2990

The answer relies on orthogonality.

Outline

- Orthogonal complements
- Computing orthogonal projections via orthogonal bases
- Orthogonal projections give closest points
- The Gram–Schmidt process: turn any basis into an orthogonal one

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Section 6.1 Orthogonal Complements

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Orthogonal complements

 $W=$ subspace of \mathbb{R}^n $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W\}$

Theorem. $A = m \times n$ matrix

$$
(\text{Row}A)^{\perp} = \text{Nul}\,A
$$

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector y in \mathbb{R}^n can be written uniquely as

 $y_W + y_{W^{\perp}}$

KORKARYKERKER POLO

where $y_W \in W$ and $y_{W^{\perp}} \in W^{\perp}$.

Section 6.2/6.3 Orthogonal Projections

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Orthogonal Projections

Let W be a subspace of \mathbb{R}^n and y a vector in \mathbb{R}^n .

 $proj_W(y)$ = orthogonal projection to W of y

KO K K Ø K K E K K E K V K K K K K K K K K

If we write y as $y_W + y_{W^{\perp}}$ then $\text{proj}_W(y) = y_W$.

Orthogonal projection as a linear transformation

Let W be a subspace of \mathbb{R}^n .

We can think of orthogonal projection to W as a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$.

The range of T is W .

The null space of T is W^{\perp} .

If v is in W then $T(v) = v$.

Orthogonal projection

Suppose $T(v) = Av$ is orthogonal projection onto a plane in $\mathbb{R}^3.$ What is A^2 equal to? 1. A 2. A^{-1} $3. -A$ 4. 0 5. I_n 6. $-I_n$ Poll

KORK EXTERNE PROVIDE

While you are at it: What are the eigenvalues of A ?

Orthogonal projection onto a line

KO K K Ø K K E K K E K V K K K K K K K K K

Say $W = \text{Span}\{u\}.$

Fact.
$$
proj_W(y) = \frac{y \cdot u}{u \cdot u} u
$$

[Demo](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=3,2&vec=-6,4&labels=u&closed)

Orthogonal projection

Projecting onto any subspace

Fact. If $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for W then

$$
y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Fact. If y is in W then this formula gives the B-coordinates.

Orthogonal bases

Finding coordinates with respect to orthogonal bases

Fact. If $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for W then

$$
y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k
$$

Problem. Say that

$$
B = \left\{ \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) \right\}
$$

and say that W is the span of B. Let $y = (6, 1, -8)$. Find y_W and the *B*-coordinates of y_W .

K ロ K K D K K B K X B K X X K K K X B K X A C Y

Best approximation

If we write y as $y_W + y_{W^{\perp}}$ then $\text{proj}_W(y) = y_W$.

This point $proj_W(y) = y_W$ is the closest point in W to y.

Section 6.4 The Gram–Schmidt Process

Kロトメ部トメミトメミト ミニのQC

Gram–Schmidt Process

With two vectors

Find an orthogonal basis for $W = \text{Span}\{u_1, u_2\}$, where

$$
u_1 = \left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right), \quad u_2 = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

Gram–Schmidt Process

With three vectors

Find an orthogonal basis for $W = \text{Span}\{u_1, u_2, u_3\}$, where

$$
u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Gram-Schmidt Process

Example

Theorem. Say $\{u_1, \ldots, u_k\}$ is a basis for a nonzero subspace of \mathbb{R}^n . Define:

$$
v_1 = u_1
$$

\n
$$
v_2 = u_2 - \text{proj}_{\text{Span}\{v_1\}(u_2)}
$$

\n
$$
v_3 = u_3 - \text{proj}_{\text{Span}\{v_1, v_2\}(u_3)}
$$

\n:
\n:
\n
$$
v_k = u_k - \text{proj}_{\text{Span}\{v_1, \dots, v_{k-1}\}(u_k)}
$$

Then $\{v_1, \ldots, v_k\}$ is an orthogonal basis for $\text{Span}\{u_1, \ldots, u_k\}$.

In other words, if at some stage you find a vector that is not orthogonal to the previous ones, then make it so!

KOD KAR KED KED E VOOR

Gram–Schmidt Process

With three vectors

Find an orthogonal basis for $W = \text{Span}\{u_1, u_2, u_3\}$, where

$$
u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 4 \\ -2 \\ 2 \\ 0 \end{pmatrix}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Summary

- $proj_W(y)$ = orthogonal projection to W of y
- If $\mathcal{B} = \{u_1, \ldots, u_k\}$ is an orthogonal basis for W then

$$
y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k
$$

This y_W is $proj_W(y)$.

- We find the matrix for projections in the usual way (project the e_i).
- If y is already in W then this gives the B-coordinates.
- The projection of y to W is the closest point in W to y .
- To find an orthogonal basis, use Gram–Schmidt:

$$
v_k = u_k - \text{proj}_{\text{Span}}\{v_1, \ldots, v_{k-1}\}(u_k)
$$

KELK KØLK VELKEN EL 1990