Announcements: Nov 27

- CIOS open
- WebWork 6.1, 6.2, 6.3 due Wednesday
- WebWork 6.4 and 6.5 not due but on the final
- No quiz on Friday
- Final Exam on Tuesday Dec 12 6:00-8:50pm
- Upcoming Office Hours
 - ▶ Me: Monday 1-2 and Wednesday 3-4, Skiles 234
 - Bharat: Tuesday 1:45-2:45, Skiles 230
 - Qianli: Wednesday 1-2, Clough 280
 - Arjun: Wednesday, 2:30-3:30, Skiles 230
 - Kemi: Thursday 9:30-10:30, Skiles 230
 - Martin: Friday 2-3, Skiles 230

Other help:

- Math Lab, Clough 280, Mon Thu 12-6
- ► Tutoring: http://www.successprograms.gatech.edu/tutoring
- CAS Study Session Dec 6 Clough 144/152

Chapter 6

Orthogonality and Least Squares

Where are we?

We have learned to solve Ax = b and $Av = \lambda v$.

We have one more main goal.

What if we can't solve Ax=b? How can we solve it as closely as possible?

The answer relies on orthogonality.

Outline

- Orthogonal complements
- Computing orthogonal projections via orthogonal bases
- Orthogonal projections give closest points
- The Gram–Schmidt process: turn any basis into an orthogonal one

Section 6.1 Orthogonal Complements

Orthogonal complements

$$\begin{split} W &= \text{subspace of } \mathbb{R}^n \\ W^\perp &= \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \} \end{split}$$

Theorem. $A = m \times n$ matrix

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector y in \mathbb{R}^n can be written uniquely as

$$y_W + y_{W^{\perp}}$$

where $y_W \in W$ and $y_{W^{\perp}} \in W^{\perp}$.

▶ Demo

Section 6.2/6.3

Orthogonal Projections

Orthogonal Projections

Let W be a subspace of \mathbb{R}^n and y a vector in \mathbb{R}^n .

$$\operatorname{proj}_W(y) = \text{orthogonal projection to } W \text{ of } y$$

▶ Demo

If we write y as $y_W + y_{W^{\perp}}$ then $\operatorname{proj}_W(y) = y_W$.

Orthogonal projection as a linear transformation

Let W be a subspace of \mathbb{R}^n .

We can think of orthogonal projection to W as a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$.

The range of T is W.

The null space of T is W^{\perp} .

If v is in W then T(v) = v.

Orthogonal projection

Poll

Suppose T(v) = Av is orthogonal projection onto a plane in \mathbb{R}^3 . What is A^2 equal to?

- 1. A
- 2. A^{-1}
- 3. -A
- **4**. 0
- 5. I_n
- 6. $-I_n$

While you are at it: What are the eigenvalues of A?

Orthogonal projection onto a line

Say
$$W = \operatorname{Span}\{u\}.$$

Fact.
$$\operatorname{proj}_W(y) = \frac{y \cdot u}{u \cdot u} u$$

▶ Demo

Orthogonal projection

Projecting onto any subspace

Fact. If $\mathcal{B} = \{u_1, \dots, u_k\}$ is an orthogonal basis for W then

$$y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k$$

Fact. If y is in W then this formula gives the \mathcal{B} -coordinates.

Orthogonal bases

Finding coordinates with respect to orthogonal bases

Fact. If $\mathcal{B} = \{u_1, \dots, u_k\}$ is an orthogonal basis for W then

$$y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k$$

Problem. Say that

$$B = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \right\}$$

and say that W is the span of B. Let y=(6,1,-8). Find y_W and the B-coordinates of y_W .

Best approximation

If we write y as $y_W + y_{W^{\perp}}$ then $\operatorname{proj}_W(y) = y_W$.

This point $\operatorname{proj}_W(y) = y_W$ is the closest point in W to y.

Section 6.4

The Gram-Schmidt Process

With two vectors

Find an orthogonal basis for $W = \operatorname{Span}\{u_1, u_2\}$, where

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

With three vectors

Find an orthogonal basis for $W = \operatorname{Span}\{u_1, u_2, u_3\}$, where

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$

Example

Theorem. Say $\{u_1, \ldots, u_k\}$ is a basis for a nonzero subspace of \mathbb{R}^n . Define:

$$v_1 = u_1$$

 $v_2 = u_2 - \text{proj}_{\text{Span}\{v_1\}(u_2)}$
 $v_3 = u_3 - \text{proj}_{\text{Span}\{v_1, v_2\}(u_3)}$
 \vdots
 $v_k = u_k - \text{proj}_{\text{Span}\{v_1, \dots, v_{k-1}\}(u_k)}$

Then $\{v_1, \ldots, v_k\}$ is an orthogonal basis for $\mathrm{Span}\{u_1, \ldots, u_k\}$.

In other words, if at some stage you find a vector that is not orthogonal to the previous ones, then make it so!

With three vectors

Find an orthogonal basis for $W = \operatorname{Span}\{u_1, u_2, u_3\}$, where

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 4 \\ -2 \\ 2 \\ 0 \end{pmatrix}$$

Summary

- $\operatorname{proj}_W(y) = \text{orthogonal projection to } W \text{ of } y$
- If $\mathcal{B} = \{u_1, \dots, u_k\}$ is an orthogonal basis for W then

$$y_W = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_k}{u_k \cdot u_k} u_k$$

This y_W is $\operatorname{proj}_W(y)$.

- We find the matrix for projections in the usual way (project the e_i).
- If y is already in W then this gives the \mathcal{B} -coordinates.
- The projection of y to W is the closest point in W to y.
- To find an orthogonal basis, use Gram–Schmidt:

$$v_k = u_k - \operatorname{proj}_{\operatorname{Span}\{v_1, \dots, v_{k-1}\}(u_k)}$$

