Mathematics 1553
Midterm 2
Prof. Margalit

Section G1/Arjun G2/Talha G3/Athreya G4/Olivia G5/James (circle one!)
19 October 2018
1. Answer the following questions. No justification for your answer is required.

Suppose we have a set of 100 vectors in \mathbb{R}^{99}. Must it be true that the set is linearly dependent?

\begin{itemize}
 \item YES
 \item NO
\end{itemize}

Let A be an $m \times n$ matrix and let $T(v) = Av$ be the associated linear transformation. Suppose that T is not one-to-one. Must it be true that $Ax = 0$ has infinitely many solutions?

\begin{itemize}
 \item YES
 \item NO
\end{itemize}

Consider the function $T : \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x) = x + 1$. Is T a linear transformation?

\begin{itemize}
 \item YES
 \item NO
\end{itemize}

Suppose that $\{u, v\}$ is a basis for a subspace V of \mathbb{R}^3. Must it be true that $\{u + v, v\}$ is a basis for V?

\begin{itemize}
 \item YES
 \item NO
\end{itemize}
2. Answer the following questions. No justification for your answer is required.

Complete the definition: A set of vectors \(\{v_1, \ldots, v_k\} \) in \(\mathbb{R}^n \) is linearly independent if...

the vector equation

\[
C_1v_1 + \cdots + C_kv_k = 0
\]

has only the trivial solution.

Consider the plane \(z = 1 \) in \(\mathbb{R}^3 \). Which properties of a subspace are failed by \(V \)? Select all that apply.

(a) Zero vector: the zero vector is in \(V \)
(b) Closure under addition: if \(u \) and \(v \) are in \(V \) then \(u + v \) is in \(V \)
(c) Closure under scalar multiplication: if \(u \) is in \(V \) and \(c \) is a scalar then \(cu \) is in \(V \)
(d) None of the above; \(V \) is a subspace

Write down a \(2 \times 2 \) matrix so that the null space and column space both equal the line \(y = x \).

\[
\begin{pmatrix}
1 & -1 \\
1 & -1
\end{pmatrix}
\]

Write down a nonzero \(2 \times 2 \) matrix \(A \) so that \(A \neq I \) and \(A^2 = A \).

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\]
3. Consider the following matrix and its reduced row echelon form:

\[A = \begin{pmatrix}
 2 & 4 & 1 & 11 & 0 \\
 3 & 6 & 1 & 16 & 0 \\
 7 & 14 & 3 & 38 & 0 \\
\end{pmatrix} \sim \begin{pmatrix}
 1 & 2 & 0 & 5 & 0 \\
 0 & 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \]

Find a basis for \(\text{Col}(A) \).

\[\left\{ \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \right\} \]

What is the dimension of \(\text{Col}(A) \)? 2

Find a basis for \(\text{Nul}(A) \).

\[\begin{align*}
 x_1 &= -2x_2 - 5x_4 \\
 x_3 &= -x_4 \\
 x_2, x_4, x_5 & \text{ free.}
\end{align*} \]

\[\left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} \]

What is the dimension of \(\text{Nul}(A) \)? 3

Is it possible for a \(3 \times 5 \) matrix to have the dimensions of its column space and null space be equal?

YES NO
4. Consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that reflects over the line $y = -x$. What is the standard matrix for T?

\[
\begin{pmatrix}
0 & -1 \\
-1 & 0
\end{pmatrix}
\]

Consider the linear transformation $U : \mathbb{R}^3 \to \mathbb{R}^2$ given by the formula

\[
U \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -x \end{pmatrix}
\]

What is the standard matrix for U?

\[
\begin{pmatrix}
1 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}
\]

Is U one-to-one? YES NO

Draw the range of U.

What is the standard matrix for $T \circ U$?

\[
\begin{pmatrix}
0 & -1 \\
-1 & 0
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}
\]
5. Consider the set of vectors

\[
\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ h \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 5 \\ 3 \end{pmatrix} \right\}
\]

For which values of \(h \) is the set linearly dependent?

\[
\begin{pmatrix} 1 & 2 & 5 \\ 1 & -1 & h \\ 1 & 1 & 3 \\ 1 & 1 & h \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & 3 \\ 0 & 1 & h \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & +2 \\ 0 & -3 & h-5 \end{pmatrix}
\]

\[
\sim \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & h+1 \end{pmatrix}
\]

\[
h = -1
\]

6. Find a basis for the plane in \(\mathbb{R}^3 \) defined by the equation \(x + 2y + z = 0 \).

\[
\begin{pmatrix} 1 & 1 & 1 \\ 2 & -2y & -z \\ 1 & y & z \\ 0 & 0 & 0 \end{pmatrix}
\]

\[
\left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \right\}
\]