#100 1 of 12

Name SOLUTIONS

Mathematics 1553

Midterm 1

Prof. Margalit

Section G1/Arjun G2/Talha G3/Athreya G4/Olivia G5/James (circle one!) 21 September 2018

#100 3 of 12

1. Answer the following questions. No justification for your answer is required.

Is the matrix $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ in reduced row echelon form?

YES

Suppose that A is an 3×4 matrix and that b is the vector obtained by adding together the first two columns of A. Must it be true that Ax = b is consistent?

Suppose we have four variables x_1 , x_2 , x_3 , and x_4 . Is the set of solutions to $x_1 + x_2 = 0$ a 3-dimensional plane?

Suppose A is a 4×3 matrix. Must it be true that the set of solutions to Ax = 0 is a span?

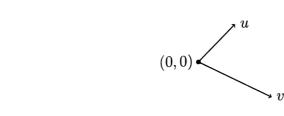
#100 5 of 12

2. Answer the following questions. No justification for your answer is required.

Complete the following definition: A linear combination of the vectors v_1, \ldots, v_k is...

a vector
$$C_1V_1 + \cdots + C_kV_k$$

where C_1, \ldots, C_k are scalars.


Write down a 2×3 matrix A so that Ax = b is consistent for every choice of b in \mathbb{R}^2 .

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Write down one vector in \mathbb{R}^3 that is not in the span of the vectors $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Circle the formula that best describes w in terms of u and v.

 $w \bullet$

$$v - v$$

$$-u-v$$

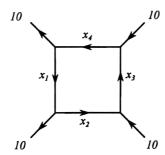
$$2u - v$$

#100 7 of 12

3. Consider the matrices

$$A = \begin{pmatrix} 2 & -4 & 0 & 8 \\ 3 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 \end{pmatrix}$$
and
$$b = \begin{pmatrix} 10 \\ 3 \\ -1 \end{pmatrix}.$$

Find the reduced row echelon form of the augmented matrix $(A \mid b)$.


$$\longrightarrow \begin{pmatrix} 1 & -2 & 0 & 4 & | & 5 \\ 0 & 1 & 0 & -2 & | & -2 \\ 0 & -1 & 1 & 4 & | & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & -2 & | & -2 \\ 0 & 0 & 1 & 2 & | & 2 \end{pmatrix}$$

Write the set of solutions to the matrix equation Ax = b in vector parametric form.

$$X_1 = 1$$
 $X_2 = -2 + 2x4$
 $X_3 = 2 - 2x4$
 $\begin{pmatrix} 1 \\ -2 \\ 2 \\ 0 \end{pmatrix} + X_4 \begin{pmatrix} 0 \\ 2 \\ -2 \\ 1 \end{pmatrix}$

4. The following diagram indicates traffic flow in the town square (the numbers indicate the number of cars per minute on each section of road).

Write a system of linear equations in x_1 , x_2 , x_3 , and x_4 describing the traffic flow around the square. Do not solve.

$$X_4 = X_1 + 10$$

 $X_3 + 10 = X_4$
 $X_2 + 10 = X_3$
 $X_1 = X_2 + 10$
 $X_1 = X_2 + 10$

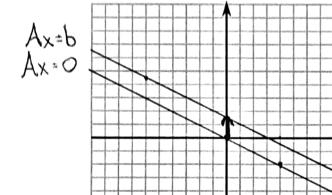
Write the above system of linear equations as a vector equation. Do not solve.

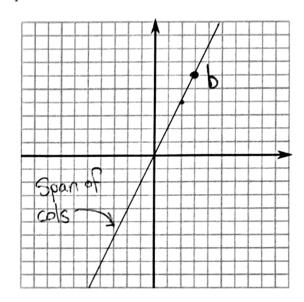
$$X_{1}\begin{pmatrix} 1\\0\\0\\1\\1\end{pmatrix} + X_{2}\begin{pmatrix} 0\\0\\1\\-1\\0\end{pmatrix} + X_{3}\begin{pmatrix} 0\\1\\-1\\0\\0\end{pmatrix} + X_{4}\begin{pmatrix} -1\\-1\\0\\0\\0\end{pmatrix}$$

$$=\begin{pmatrix} -10\\-10\\-10\\0\\0\end{pmatrix}$$

Write the above system of linear equations as a matrix equation. Do not solve.

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} -10 \\ -10 \\ -10 \\ 10 \end{pmatrix}$$


#100 11 of 12



5. Consider the matrices

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 and $b = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

On the left-hand side draw and label three things: the set of solutions to Ax = 0, the set of solutions to Ax = b, and one particular solution to Ax = b as a vector/arrow. On the right-hand side draw and label two things: the span of the columns of A and b as a dot.

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \qquad \begin{array}{l} x + 2y = 0 \\ y = -\frac{1}{2}x \end{array} \qquad \begin{array}{l} x + 2y = 3 \\ y = -\frac{1}{2}x + \frac{3}{2} \end{array}$$

$$x + 2y = 0$$

 $y = -\frac{1}{2}x$

$$X + 2y = 3$$

 $Y = -\frac{1}{2}x + \frac{3}{2}$

For which values of h does the matrix equation $Ax = \begin{pmatrix} -1 \\ h \end{pmatrix}$ have a solution?

Is there a different choice of b so that the set of solutions to Ax = b is the line y = x? If so, write down such a b. If not, briefly explain why not.