Announcements August 21

- Mathematical autobiography due on Friday
- WeBWorK Warmup due Friday (not for a grade)
- My office hours today 2-3 and Friday 9-10 in Skiles 234
- Recitation on Friday: same time, different room, with TA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Remember the laptop rules

Section 2.1

Solving systems of equations

Outline of Section 2.1

- · Learn what it means to solve a system of linear equations
- Describe the solutions as points in \mathbb{R}^n
- Learn what it means for a system of linear equations to be inconsistent

Solving equations

・ロト・日本・ヨト・ヨー うへの

Solving equations

What does it mean to solve an equation?

2x = 10

x + y = 1

x + y + z = 0

Find one solution to each. Can you find all of them?

A solution is a *list* of numbers. For example (3, -4, 1).

Solving equations

What does it mean to solve a system of equations?

 $\begin{aligned} x + y &= 2\\ y &= 1 \end{aligned}$

What about...

$$\begin{aligned} x+y+z&=3\\ x+y-z&=1\\ x-y+z&=1 \end{aligned}$$

Is (1,1,1) a solution? Is (2,0,1) a solution? What are all the solutions?

Soon, you will be able to see just by looking that there is exactly one solution.

 $\mathbb{R}=$ denotes the set of all real numbers

Geometrically, this is the number line.

 \mathbb{R}^n = all ordered *n*-tuples (or lists) of real numbers $(x_1, x_2, x_3, \dots, x_n)$ Solutions to systems of equations are exactly points in \mathbb{R}^n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\mathbb{R}^n When n = 2, we can visualize of \mathbb{R}^2 as the *plane*.

(ロ)、(型)、(E)、(E)、 E) の(()

 \mathbb{R}^{n}

When n = 3, we can visualize \mathbb{R}^3 as the *space* we (appear to) live in.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

 \mathbb{R}^{n}

We can think of the space of all *colors* as (a subset of) \mathbb{R}^3 :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

So what is \mathbb{R}^4 ? or \mathbb{R}^5 ? or \mathbb{R}^n ?

... go back to the *definition*: ordered *n*-tuples of real numbers

 $(x_1, x_2, x_3, \ldots, x_n).$

They're still "geometric" spaces, in the sense that our intuition for \mathbb{R}^2 and \mathbb{R}^3 sometimes extends to \mathbb{R}^n , but they're harder to visualize.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Last time we could have used \mathbb{R}^4 to label the amount of traffic (x,y,z,w) passing through four streets.

We'll make definitions and state theorems that apply to any \mathbb{R}^n , but we'll only draw pictures in \mathbb{R}^2 and \mathbb{R}^3 .

▲□▶▲□▶▲□▶▲□▶ □ のQの

 \mathbb{R}^n and QR codes

This is a 21×21 QR code. We can also think of this as an element of \mathbb{R}^n .

How? Which *n*?

What about a greyscale image?

This is a powerful idea: instead of thinking of a QR code as 441 pieces of information, we think of it as one piece of information.

Visualizing solutions: a preview

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

One Linear Equation

What does the solution set of a linear equation look like?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $x + y = 1 \xrightarrow{} a$ line in the plane: y = 1 - x

One Linear Equation

What does the solution set of a linear equation look like?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 $x + y + z = 1 \xrightarrow{} a$ plane in space:

One Linear Equation

Continued

What does the solution set of a linear equation look like?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $x + y + z + w = 1 \xrightarrow{\text{output}} a$ "3-plane" in "4-space"...

Systems of Linear Equations

What does the solution set of a *system* of more than one linear equation look like?

x - 3y = -32x + y = 8

What are the other possibilities for two equations with two variables?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

What if there are more variables? More equations?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Answer. No + no. To describe any point in \mathbb{R}^3 , you need three numbers, not a list of two numbers. The *xy*-plane in \mathbb{R}^3 is the set of all triples (x, y, 0). So it's like \mathbb{R}^2 , but it is not.

Consistent versus Inconsistent

We say that a system of linear equations is consistent if it has a solution and inconsistent otherwise.

$$\begin{aligned} x + y &= 1\\ x + y &= 2 \end{aligned}$$

Why is this inconsistent?

What are other examples of inconsistent systems of linear equations?

(ロ)、(型)、(E)、(E)、 E) の(()

Summary of Section 2.1

- A solution to a system of linear equations in n variables is a point in \mathbb{R}^n .
- The set of all solutions to a single equation in n variables is an (n-1)-dimensional plane in \mathbb{R}^n
- The set of solutions to a system of m linear equations in n variables is the intersection of m of these (n-1)-dimensional planes in \mathbb{R}^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• A system of equations with no solutions is said to be inconsistent.