Announcements: Sep 12

- Midterm 1 on Sep 21
- Quiz 3 Friday in recitation
- WeBWorK 3.1 and 3.2 due tonite!
- My office hours today 2:00-3:00 and Friday 9:30-10:30 in Skiles 234
- TA Office Hours
 - Arjun Wed 3-4 Skiles 230
 - ► Talha Tue/Thu 11-12 Clough 248
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - ▶ James Fri 12-1 Skiles 230
 - ▶ Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 9:30-10:30 Skiles 230
 - ► Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday Thursday 11:15-5:15 Clough 280
- PLUS Sessions
 - ► Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123
- Supplemental problems on master course web site
- Students are responsible for pressing "Save my response" on Piazza polls and having the correct email address on Piazza.
- Let's talk about efficient use of resources!

Section 3.4

Solution Sets

Outline

- \bullet Understand the geometric relationship between the solutions to Ax=b and Ax=0
- Understand the relationship between solutions to Ax = b and spans
- ullet Learn the parametric vector form for solutions to Ax=b

Homogeneous systems

Solving Ax = b is easiest when b = 0.

Homogeneous systems \longleftrightarrow matrix equations Ax = 0.

Homogenous systems are always consistent. Why?

When does Ax = 0 have a nonzero/nontrivial solution?

If there are k-free variables and n total variables, then the solution is a k-dimensional plane through the origin in \mathbb{R}^n . In particular it is a span.

Solve the matrix equation Ax = 0 where

$$A = \left(\begin{array}{cccc} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{array} \right) \leadsto \left(\begin{array}{cccc} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

We already know the parametric form:

$$x_1 = 8x_3 + 7x_4$$
 $x_2 = -4x_3 - 3x_4$ $x_3 = x_3$ (free) $x_4 = x_4$ (free)

We can also write this in parametric vector form:

$$x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix}$$

Or we can write the solution as a span: $Span\{(8, -4, 1, 0), (7, -3, 0, 1)\}.$

Parametric Vector Forms for Solutions

Homogeneous case

Find the parametric vector form of the solution to $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$ where

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

Variables, equations, and dimension

Poll

For $b \neq 0$, the solutions to Ax = b are...

- 1. always a span
- 2. sometimes a span
- 3. never a span

Nonhomogeneous Systems

Suppose Ax = b, and $b \neq 0$.

As before, we can find the parametric vector form for the solution in terms of free variables.

What is the difference?

Parametric Vector Forms for Solutions

Nonhomogeneous case

Find the parametric vector form of the solution to Ax = b where:

$$(A|b) = \begin{pmatrix} 1 & 2 & 0 & -1 & 3 \\ -2 & -3 & 4 & 5 & 2 \\ 2 & 4 & 0 & -2 & 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -8 & -7 & -13 \\ 0 & 1 & 4 & 3 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

We already know the parametric form:

$$x_1 = -13 + 8x_3 + 7x_4$$
 $x_2 = 8 - 4x_3 - 3x_4$
 $x_3 = x_3$ (free)
 $x_4 = x_4$ (free)

We can also write this in parametric vector form:

$$\begin{pmatrix} -13 \\ 8 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix}$$

Parametric Vector Forms for Solutions

Nonhomogeneous case

Find the parametric vector form for the solution to Ax = (9) where

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(1 \ 1 \ 1 \ 1 \ | 9)$$

Homogeneous vs. Nonhomogeneous Systems

Key realization. Set of solutions to Ax=b obtained by taking one solution and adding all possible solutions to Ax=0.

$$Ax = 0$$
 solutions $\rightsquigarrow Ax = b$ solutions

$$x_k v_k + \dots + x_n v_n \leadsto p + x_k v_k + \dots + x_n v_n$$

So: set of solutions to Ax = b is parallel to the set of solutions to Ax = 0.

So by understanding Ax=0 we gain understanding of Ax=b for all b. This gives structure to the set of equations Ax=b for all b.

▶ Demo

Two different things

Suppose A is an $m \times n$ matrix. Notice that if Ax = b is a matrix equation then x is in \mathbb{R}^n and b is in \mathbb{R}^m . There are two different problems to solve.

- 1. If we are given a specific b, then we can solve Ax = b. This means we find all x in \mathbb{R}^n so that Ax = b. We do this by row reducing, taking free variables for the columns without pivots, and writing the (parametric) vector form for the solution.
- 2. We can also ask for which b in \mathbb{R}^m does Ax = b have a solution? The answer is: when b is in the span of the columns of A. So the answer is "all b in \mathbb{R}^{m} " exactly when the span of the columns is \mathbb{R}^m which is exactly when A has m pivots.

If you go back to the Demo from earlier in this section, the first question is happening on the left and the second question on the right.

Summary of Section 3.4

- The solutions to Ax = 0 form a plane through the origin (span)
- ullet The solutions to Ax=b form a plane not through the origin
- The set of solutions to Ax = b is parallel to the one for Ax = 0
- In either case we can write the parametric vector form. The parametric vector form for the solution to Ax=0 is obtained from the one for Ax=b by deleting the constant vector. And conversely the parametric vector form for Ax=b is obtained from the one for Ax=0 by adding a constant vector. This vector translates the solution set.