Announcements: Sep 17

- Midterm 1 on Friday
- WeBWorK 3.3 and 3.4 due tonite!
- My office hours Wednesday 2:00-3:00 and Friday 9:30-10:30 in Skiles 234
- TA Office Hours
 - Arjun Wed 3-4 Skiles 230
 - ► Talha Tue/Thu 11-12 Clough 248
 - ► Athreya Tue 3-4 Skiles 230
 - ▶ Olivia Thu 3-4 Skiles 230
 - ▶ James Fri 12-1 Skiles 230
 - ▶ Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 9:30-10:30 Skiles 230
 - ► Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday Thursday 11:15-5:15 Clough 280
- PLUS Sessions
 - ► Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123
- Review Sessions
 - ► Talha Thu 7-8:30 Mason 1133 (doors close at 7!)
 - Arjun tba
- Supplemental problems and practice exams on master course web site

Section 3.5

Linear Independence

Section 1.7 Outline

- Understand what is means for a set of vectors to be linearly independent
- Understand how to check if a set of vectors is linearly independent

Basic question: What is the smallest number of vectors needed in the parametric solution to a linear system?

A set of vectors $\{v_1,\ldots,v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0$$

has only the trivial solution. It is linearly dependent otherwise.

So, linearly dependent means there are c_1, c_2, \ldots, c_k not all zero so that

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$$

This is a *linear dependence* relation.

A set of vectors $\{v_1,\ldots,v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$$

has only the trivial solution.

Fact. The cols of A are linearly independent

 $\Leftrightarrow Ax = 0$ has only the trivial solution.

 $\Leftrightarrow A \text{ has a pivot in each column}$

Why?

Is
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 3\\1\\4 \end{pmatrix} \right\}$$
 linearly independent?

Is
$$\left\{ \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 3\\1\\4 \end{pmatrix} \right\}$$
 linearly independent?

When is $\{v\}$ is linearly dependent?

When is $\{v_1, v_2\}$ is linearly dependent?

When is the set $\{v_1, v_2, \dots, v_k\}$ linearly dependent?

Fact. The set $\{v_1, v_2, \dots, v_k\}$ is linearly dependent if and only if we can remove a vector from the set without changing the dimension of the span.

Fact. The set $\{v_1,v_2,\ldots,v_k\}$ is linearly dependent if and only if some v_i lies in the span of v_1,\ldots,v_{i-1} .

Span and Linear Independence

Is
$$\left\{ \begin{pmatrix} 5 \\ 7 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 7 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \right\}$$
 linearly independent?

Linear independence and free variables

Theorem. Let v_1, \ldots, v_k be vectors in \mathbb{R}^n and consider the vector equation

$$c_1v_1+\cdots+c_kv_k=0.$$

The set of vectors corresponding to non-free variables are linearly independent.

So if we put the v_i as the columns of a matrix, the number of pivots is the dimension of the span. Actually, the columns of the *original matrix* corresponding to the pivots are linear independent.

Linear independence and coordinates

Theorem. If v_1, \ldots, v_k are linearly independent vectors then we can write each element of

$$\operatorname{Span}\{v_1,\ldots,v_k\}$$

in exactly one way as a linear combination of v_1, \ldots, v_k .

More on this later, when we get to bases.

Span and Linear Independence

Two More Facts

Fact 1. Say v_1,\ldots,v_k are in \mathbb{R}^n . If k>n, then $\{v_1,\ldots,v_k\}$ is linearly dependent.

Fact 2. If one of v_1, \ldots, v_k is 0, then $\{v_1, \ldots, v_k\}$ is linearly dependent.

Summary of Section 3.5

• A set of vectors $\{v_1,\ldots,v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$$

has only the trivial solution. It is linearly dependent otherwise.

- The cols of A are linearly independent
 - $\Leftrightarrow Ax = 0$ has only the trivial solution.
 - $\Leftrightarrow A$ has a pivot in each column
- The number of pivots of A equals the dimension of the span of the columns of A
- The set $\{v_1, v_2, \dots, v_k\}$ is linearly dependent if and only if some v_i lies in the span of v_1, \dots, v_{i-1} .