Announcements: Sep 26

- Midterm 2 Oct 19 in recitation
- **No quiz** Friday in recitation
- WeBWorK 3.5 and 3.6 due Wednesday
- My office hours **Wed 2-3** and Friday 9:30-10:30 in Skiles 234
- TA Office Hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 248
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Fri 12-1 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 9:30-10:30 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday-Thursday 11:15-5:15 Clough 280
- PLUS Sessions
 - Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123
- Supplemental problems and practice exams on master course web site
Sections 4.1

Matrix Transformations
Section 4.1 Outline

- Learn to think of matrices as functions, called matrix transformations
- Learn the associated terminology: domain, codomain, range
- Understand what certain matrices do to \mathbb{R}^n
From matrices to functions

Let A be an $m \times n$ matrix.

We define a function

$$T : \mathbb{R}^n \to \mathbb{R}^m$$

$$T(v) = Av$$

This is called a matrix transformation.

The domain of T is \mathbb{R}^n. The co-domain of T is \mathbb{R}^m.

The range of T is the set of outputs: $\text{Col}(A)$

This gives us another point of view of $Ax = b$
Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \), \(u = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \), \(b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix} \).

What is \(T(u) \)?

Find \(v \) in \(\mathbb{R}^2 \) so that \(T(v) = b \)

Find a vector in \(\mathbb{R}^3 \) that is not in the range of \(T \).
Square matrices

For a square matrix we can think of the associated matrix transformation

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^n \]

as doing something to \(\mathbb{R}^n \).

Example. The matrix transformation \(T \) for

\[
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\]

What does \(T \) do to \(\mathbb{R}^2 \)?
Square matrices

What does each matrix do to \mathbb{R}^2?

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
3 & 0 \\
0 & 3
\end{pmatrix}
\]

What is the range in each case?
Poll

What does \[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\] do to this letter F?
Square matrices

What does each matrix do to \mathbb{R}^2?

Hint: if you can’t see it all at once, see what happens to the x- and y-axes.

\[
\begin{pmatrix}
1 & 1 \\
0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & -1 \\
1 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{pmatrix}
\]
Examples in \mathbb{R}^3

What does each matrix do to \mathbb{R}^3?

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]
Section 4.1 Summary

- If A is an $m \times n$ matrix, then the associated matrix transformation T is given by $T(v) = Av$. This is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m and range $\text{Col}(A)$.

- If A is $n \times n$ then T does something to \mathbb{R}^n; basic examples: reflection, projection, scaling, shear, rotation.