Announcements: October 3

- Midsemester Course Evaluations due Friday on Canvas
- Midterm 2 Oct 19 in recitation
- Quiz on 3.7, 3.9, 4.1 Friday in recitation
- WeBWorK due tonite!
- My office hours Wed 2-3 in Skiles 234
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 248
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Fri 12-1 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 9:30-10:30 Skiles 230
- Math Lab Monday-Thursday 11:15-5:15 Clough 280

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- PLUS Sessions
 - Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123

Section 4.3

Linear Transformations

Section 4.3 Outline

- Understand the definition of a linear transformation
- Linear transformations are the same as matrix transformations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Find the matrix for a linear transformation

Linear transformations

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

- T(u+v) = T(u) + T(v) for all u, v in \mathbb{R}^n .
- T(cv) = cT(v) for all v in \mathbb{R}^n and c in \mathbb{R} .

Notice that T(0) = 0. Why?

We have the standard basis vectors for \mathbb{R}^n :

 $e_1 = (1, 0, 0, \dots, 0)$ $e_2 = (0, 1, 0, \dots, 0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If we know $T(e_1), \ldots, T(e_n)$, then we know every T(v). Why?

In engineering, this is called the principle of superposition.

Theorem. Every linear transformation is a matrix transformation.

This means that for any linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$ there is an $m\times n$ matrix A so that

$$T(v) = Av$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

for all v in \mathbb{R}^n .

The matrix for a linear transformation is called the standard matrix.

Theorem. Every linear transformation is a matrix transformation.

Given a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ the standard matrix is:

$$A = \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{pmatrix}$$

Why? Notice that $Ae_i = T(e_i)$ for all *i*. Then it follows from linearity that T(v) = Av for all *v*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The identity

The identity linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is

T(v) = v

(ロ)、(型)、(E)、(E)、 E) の(()

What is the standard matrix?

This standard matrix is called I_n or I.

Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ is the function given by:

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x+y\\y\\x-y\end{array}\right)$$

What is the standard matrix for T?

In fact, a function $\mathbb{R}^n \to \mathbb{R}^m$ is linear exactly when the coordinates are linear (linear combinations of the variables).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Find the standard matrix for the linear transformation of \mathbb{R}^2 that stretches by 2 in the *x*-direction and 3 in the *y*-direction, and then reflects over the line y = x.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Find the standard matrix for the linear transformation of \mathbb{R}^2 that projects onto the *y*-axis and then rotates counterclockwise by $\pi/2$.

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the *xy*-plane and then projects onto the *yz*-plane.

Discussion

Summary of 4.3

- A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if
 - T(u+v) = T(u) + T(v) for all u, v in \mathbb{R}^n .
 - T(cv) = cT(v) for all $v \in \mathbb{R}^n$ and c in \mathbb{R} .
- **Theorem.** Every linear transformation is a matrix transformation (and vice versa).
- The standard matrix for a linear transformation has its ith column equal to $T(e_i)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる