Announcements: October 10

- Midterm 2 Oct 19 in recitation
- Quiz on 4.2 & 4.3 Friday in recitation
- WeBWorK due Friday!
- My office hours Wed 2-3 in Skiles 234
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - ► Talha Tue/Thu 11-12 Clough 248
 - ► Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Fri 12-1 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - ▶ Vajraang Thu 9:30-10:30 Skiles 230
 - ► Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday-Thursday 11:15-5:15 Clough 280
- PLUS Sessions
 - ► Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123

Section 4.4

Matrix Multiplication

Section 4.4 Outline

- Understand composition of linear transformations
- Learn how to multiply matrices
- Learn the connection between these two things

Function composition

Remember from calculus that if f and g are functions then the composition $f\circ g$ is a new function defined as follows:

$$f \circ g(x) = f(g(x))$$

In words: first apply g, then f.

Example: $f(x) = x^2$ and g(x) = x + 1.

Note that $f\circ g$ is usually different from $g\circ f.$

Composition of linear transformations

We can do the same thing with linear transformations $T:\mathbb{R}^m \to \mathbb{R}^p$ and $U:\mathbb{R}^n \to \mathbb{R}^m$ and make the composition $T\circ U$.

Notice that both have an m. Why?

What are the domain and codomain for $T \circ U$?

Associative property: $(S \circ T) \circ U = S \circ (T \circ U)$

Why?

Composition of linear transformations

Example. T= projection to y-axis and U= reflection about y=x in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

What about $U \circ T$?

Matrix Multiplication

And now for something completely different (not really!)

Suppose A is an $m \times n$ matrix. We write a_{ij} or A_{ij} for the ijth entry.

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$ and

$$(AB)_{ij} = r_i \cdot b_j$$

where r_i is the *i*th row of A, and b_j is the *j*th column of B.

Or: the jth column of AB is A times the jth column of B.

Multiply these matrices (both ways):

$$\left(\begin{array}{rrr}1 & 2 & 3\\4 & 5 & 6\end{array}\right)\left(\begin{array}{rrr}0 & -2\\1 & -1\\2 & 0\end{array}\right)$$

Matrix Multiplication and Linear Transformations

As above, the composition $T \circ U$ means: do U then do T

Fact. The standard matrix for a composition of linear transformations is the product of the standard matrices.

Why? Say that the standard matrices for T and U are A and B:

$$(T \circ U)(v) = T(U(v)) = T(Bv) = A(Bv)$$

So we need to check that A(Bv)=(AB)v. Enough to do this for $v=e_i$. In this case Bv is the ith column of B. So the left-hand side is A times the ith column of B. The right-hand side is the ith column of AB which we already said was A times the ith column of B. It works!

Matrix Multiplication and Linear Transformations

Fact. The matrix for a composition of linear transformations is the product of the standard matrices.

Example. T= projection to y-axis and U= reflection about y=x in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.

Discussion Question

Are there nonzero matrices A and B with AB = 0?

- 1. Yes
- 2. No

Properties of Matrix Multiplication

- A(BC) = (AB)C
- A(B+C) = AB + AC
- $\bullet \ (B+C)A = BA + CA$
- r(AB) = (rA)B = A(rB)
- $\bullet \ (AB)^T = B^T A^T$
- $I_m A = A = A I_n$, where I_k is the $k \times k$ identity matrix.

Multiplication is associative because function composition is (this would be hard to check from the definition!).

Warning!

- ullet AB is not always equal to BA
- AB = AC does not mean that B = C
- AB = 0 does not mean that A or B is 0

Sums and Scalar Multiples

Same as for vectors: component-wise, so matrices must be same size to add.

$$A + B = B + A$$

$$(A+B) + C = A + (B+C)$$

$$r(A+B) = rA + rB$$

$$(r+s)A = rA + sA$$

$$(rs)A = r(sA)$$

$$A + 0 = A$$

(We can define linear transformations T+U ad cT, and so all of the above facts are also facts about linear transformations.)

Summary of Section 4.4

- Composition: $(T \circ U)(v) = T(U(v))$ (do U then T)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- Matrix multiplication: the *i*th column of AB is $A(b_i)$
- The standard matrix for a composition of linear transformations is the product of the standard matrices.
- Warning!
 - ightharpoonup AB is not always equal to BA
 - ightharpoonup AB = AC does not mean that B = C
 - ightharpoonup AB = 0 does not mean that A or B is 0