Announcements: October 10

- Midterm 2 Oct 19 in recitation
- Quiz on 4.2 & 4.3 Friday in recitation
- WeBWorK due Friday!
- My office hours Wed 2-3 in Skiles 234
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 248
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Fri 12-1 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 9:30-10:30 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday-Thursday 11:15-5:15 Clough 280
- PLUS Sessions
 - Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123
Section 4.4

Matrix Multiplication
Section 4.4 Outline

- Understand composition of linear transformations
- Learn how to multiply matrices
- Learn the connection between these two things
Function composition

Remember from calculus that if \(f \) and \(g \) are functions then the composition \(f \circ g \) is a new function defined as follows:

\[
f \circ g(x) = f(g(x))
\]

In words: first apply \(g \), then \(f \).

Example: \(f(x) = x^2 \) and \(g(x) = x + 1 \).

Note that \(f \circ g \) is usually different from \(g \circ f \).
Composition of linear transformations

We can do the same thing with linear transformations $T : \mathbb{R}^m \to \mathbb{R}^p$ and $U : \mathbb{R}^n \to \mathbb{R}^m$ and make the composition $T \circ U$.

Notice that both have an m. Why?

What are the domain and codomain for $T \circ U$?

Associative property: $(S \circ T) \circ U = S \circ (T \circ U)$

Why?
Composition of linear transformations

Example. $T =$ projection to y-axis and $U =$ reflection about $y = x$ in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

What about $U \circ T$?
Matrix Multiplication
And now for something completely different (not really!)

Suppose \(A \) is an \(m \times n \) matrix. We write \(a_{ij} \) or \(A_{ij} \) for the \(ij \)th entry.

If \(A \) is \(m \times n \) and \(B \) is \(n \times p \), then \(AB \) is \(m \times p \) and

\[
(AB)_{ij} = r_i \cdot b_j
\]

where \(r_i \) is the \(i \)th row of \(A \), and \(b_j \) is the \(j \)th column of \(B \).

Or: the \(j \)th column of \(AB \) is \(A \) times the \(j \)th column of \(B \).

Multiply these matrices (both ways):

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\begin{pmatrix}
0 & -2 \\
1 & -1 \\
2 & 0
\end{pmatrix}
\]
Matrix Multiplication and Linear Transformations

As above, the composition $T \circ U$ means: do U then do T

Fact. The standard matrix for a composition of linear transformations is the product of the standard matrices.

Why? Say that the standard matrices for T and U are A and B:

$$(T \circ U)(v) = T(U(v)) = T(Bv) = A(Bv)$$

So we need to check that $A(Bv) = (AB)v$. Enough to do this for $v = e_i$. In this case Bv is the ith column of B. So the left-hand side is A times the ith column of B. The right-hand side is the ith column of AB which we already said was A times the ith column of B. It works!
Matrix Multiplication and Linear Transformations

Fact. The matrix for a composition of linear transformations is the product of the standard matrices.

Example. $T = \text{projection to } y\text{-axis}$ and $U = \text{reflection about } y = x \text{ in } \mathbb{R}^2$

What is the standard matrix for $T \circ U$?
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \(\mathbb{R}^3 \) that reflects through the \(xy \)-plane and then projects onto the \(yz \)-plane.
Discussion Question

Are there nonzero matrices A and B with $AB = 0$?

1. Yes
2. No
Properties of Matrix Multiplication

- \(A(BC) = (AB)C \)
- \(A(B + C) = AB + AC \)
- \((B + C)A = BA + CA \)
- \(r(AB) = (rA)B = A(rB) \)
- \((AB)^T = B^T A^T \)
- \(I_mA = A = AI_n \), where \(I_k \) is the \(k \times k \) identity matrix.

Multiplication is associative because function composition is (this would be hard to check from the definition!).

Warning!

- \(AB \) is not always equal to \(BA \)
- \(AB = AC \) does not mean that \(B = C \)
- \(AB = 0 \) does not mean that \(A \) or \(B \) is 0
Sums and Scalar Multiples

Same as for vectors: component-wise, so matrices must be same size to add.

\[A + B = B + A \]

\[(A + B) + C = A + (B + C) \]

\[r(A + B) = rA + rB \]

\[(r + s)A = rA + sA \]

\[(rs)A = r(sA) \]

\[A + 0 = A \]

(We can define linear transformations \(T + U \) ad \(cT \), and so all of the above facts are also facts about linear transformations.)
Summary of Section 4.4

- Composition: \((T \circ U)(v) = T(U(v))\) (do \(U\) then \(T\))
- Matrix multiplication: \((AB)_{ij} = r_i \cdot b_j\)
- Matrix multiplication: the \(i\)th column of \(AB\) is \(A(b_i)\)
- The standard matrix for a composition of linear transformations is the product of the standard matrices.

Warning!

- \(AB\) is not always equal to \(BA\)
- \(AB = AC\) does not mean that \(B = C\)
- \(AB = 0\) does not mean that \(A\) or \(B\) is 0