Announcements: October 15

- Midterm 2 Friday in recitation, §3.5–4.4
- WeBWorK due Wednesday
- Supplemental problems and Practice exam on web site
- My office hours Wed 2-3 and Friday 9:30-10:30 in Skiles 234
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 248
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Fri 12-1 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 9:30-10:30 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Math Lab Monday-Thursday 11:15-5:15 Clough 280
- PLUS Sessions
 - Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123

Section 4.5

Matrix Inverses

Section 4.5 Outline

- The definition of a matrix inverse
- How to find a matrix inverse
- Inverses for linear transformations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inverses

 $A = n \times n$ matrix.

A is invertible if there is a matrix B with

$$AB = BA = I_n$$

B is called the inverse of A and is written A^{-1}

Example:

$$\left(\begin{array}{cc}2&1\\1&1\end{array}\right)^{-1}=\left(\begin{array}{cc}1&-1\\-1&2\end{array}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The 2×2 Case

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then $det(A) = ad - bc$ is the determinant of A .

Fact. If det(A) $\neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

If det(A) = 0 then A is not invertible.

Example.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$
.

Solving Linear Systems via Inverses

Fact. If A is invertible, then Ax = b has exactly one solution:

 $x = A^{-1}b.$

Solve

$$2x + 3y + 2z = 1$$
$$x + 3z = 1$$
$$2x + 2y + 3z = 1$$

Using

$$\left(\begin{array}{rrrr} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{array}\right)^{-1} = \left(\begin{array}{rrrr} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{array}\right)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Solving Linear Systems via Inverses

What if we change b?

$$2x + 3y + 2z = 1$$
$$x + 3z = 0$$
$$2x + 2y + 3z = 1$$

Using

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}$$

So finding the inverse is essentially the same as solving all Ax = b equations at once (fixed A, varying b).

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Some Facts

Say that A and B are invertible $n \times n$ matrices.

- A^{-1} is invertible and $(A^{-1})^{-1} = A$
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

What is $(ABC)^{-1}$?

A recipe for the inverse

Suppose $A = n \times n$ matrix.

- Row reduce $(A \mid I_n)$
- If reduction has form $(I_n | B)$ then A is invertible and $B = A^{-1}$.
- Otherwise, A is not invertible.

Example. Find
$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}^{-1}$$

 $\begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & 0 & 2 & | & 0 & 3 & 1 \end{pmatrix}$
 $\sim \Rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 1 & -6 & -2 \\ 0 & 1 & 0 & | & 0 & -2 & -1 \\ 0 & 0 & 1 & | & 0 & 3/2 & 1/2 \end{pmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why Does This Work?

First answer: we can think of the algorithm as simultaneously solving

$$Ax_1 = e_1$$
$$Ax_2 = e_2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

and so on. But the columns of A^{-1} are $A^{-1}e_i$, which is x_i .

The Invertible Matrix Theorem

Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

- (1) A is invertible
- (2) T is invertible
- (3) The reduced row echelon form of A is I_n
- (4) A has n pivots
- (5) Ax = 0 has only 0 solution
- (6) $Nul(A) = \{0\}$
- (7) nullity(A) = 0
- (8) columns of A are linearly independent
- (9) columns of A form a basis for \mathbb{R}^n
- (10) T is one-to-one
- (11) Ax = b is consistent for all b in \mathbb{R}^n
- (12) Ax = b has a unique solution for all b in \mathbb{R}^n
- (13) columns of A span \mathbb{R}^n
- (14) $\operatorname{Col}(A) = \mathbb{R}^n$
- (15) $\operatorname{rank}(A) = n$
- (16) *T* is onto
- (17) A has a left inverse
- (18) A has a right inverse

The Invertible Matrix Theorem

There are two kinds of square matrices, invertible and non-invertible matrices.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

For invertible matrices, all of the conditions in the IMT hold. And for a non-invertible matrix, all of them fail to hold.

Example

Determine whether A is invertible.
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix}$$

It isn't necessary to find the inverse. Instead, we may use the Invertible Matrix Theorem by checking whether we can row reduce to obtain three pivot columns, or three pivot positions.

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{pmatrix}$$

There are three pivot positions, so A is invertible by the IMT (statement c).

・ロト・日本・ヨト・ヨー うへの

The Invertible Matrix Theorem

(日) (四) (日) (日) (日)

Invertible Functions

A function $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a function $U: \mathbb{R}^n \to \mathbb{R}^n$, so

 $T \circ U = U \circ T =$ identity

That is,

$$T \circ U(v) = U \circ T(v) = v$$
 for all $v \in \mathbb{R}^n$

Fact. Suppose $A = n \times n$ matrix and T is the matrix transformation. Then T is invertible as a function if and only if A is invertible. And in this case, the standard matrix for T^{-1} is A^{-1} .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Example. Counterclockwise rotation by $\pi/2$.

Summary of Section 4.5

• A is invertible if there is a matrix B (called the inverse) with

$$AB = BA = I_n$$

• For a 2×2 matrix A we have that A is invertible exactly when $\det(A) \neq 0$ and in this case

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

• If A is invertible, then Ax = b has exactly one solution:

$$x = A^{-1}b$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $(A^{-1})^{-1} = A$ and $(AB)^{-1} = B^{-1}A^{-1}$
- Recipe for finding inverse: row reduce $(A | I_n)$.
- Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.
 - (1) A is invertible
 - (2) T is invertible
 - (3) The reduced row echelon form of A is I_n
 - (4) etc.