Announcements: October 31

- Midterm 3 on $\S4.5-6.5$ Nov 16 in recitation
- Quiz 5.1-5.3 Friday in recitation. Study last two slides in 5.1/5.3
- WeBWorK 5.1-5.3 due Wednesday
- My office hours Wed 2-3 and Friday 9:30-10:30 in Skiles 234
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 248
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Tue 11-12 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 11-12 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday-Thursday 11:15-5:15 Clough 280 Schedule

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- PLUS Sessions
 - Tue/Thu 6-7
 - Mon/Wed 6-7

Section 6.2 The characteristic polynomial

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline of Section 6.2

• How to find the eigenvalues, via the characteristic polynomial

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Techniques for the 3×3 case

Characteristic polynomial

Recall:

 λ is an eigenvalue of $A \iff A - \lambda I$ is not invertible

So to find eigenvalues of A we solve

$$\det(A - \lambda I) = 0$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The left hand side is a polynomial, the characteristic polynomial of A.

The roots of the characteristic polynomial are the eigenvalues of A.

The eigenrecipe

Say you are given an square matrix A.

Step 1. Find the eigenvalues of A by solving

$$\det(A - \lambda I) = 0$$

Step 2. For each eigenvalue λ_i the λ_i -eigenspace is the solution to

$$(A - \lambda_i I)x = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

To find a basis, find the vector parametric solution, as usual.

Characteristic polynomial

Find the characteristic polynomial and eigenvalues of

$$\left(\begin{array}{cc} 5 & 2 \\ 2 & 1 \end{array}\right)$$

Characteristic polynomials, trace, and determinant

The trace of a matrix is the sum of the diagonal entries.

The characteristic polynomial of an $n \times n$ matrix A is a polynomial with leading term $(-1)^n$, next term $(-1)^{n-1}$ trace(A), and constant term det(A):

$$(-1)^n \lambda^n + (-1)^{n-1} \operatorname{trace}(A) \lambda^{n-1} + \dots + \det(A)$$

So for a 2×2 matrix:

$$\lambda^2 - \operatorname{trace}(A)\lambda + \det(A)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Characteristic polynomials

 3×3 matrices

Find the characteristic polynomial of the following matrix.

$$\left(\begin{array}{rrrr} 7 & 0 & 3 \\ -3 & 2 & -3 \\ -3 & 0 & -1 \end{array}\right)$$

Answer:

$$(2-\lambda)((7-\lambda)(-1-\lambda)+9) = (2-\lambda)(\lambda^2 - 6\lambda + 2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Don't multiply it out!

What are the eigenvalues?

Characteristic polynomials

 3×3 matrices

Find the characteristic polynomial of the following matrix.

$$\left(\begin{array}{rrrr} 7 & 0 & 3 \\ -3 & 2 & -3 \\ 4 & 2 & 0 \end{array}\right)$$

Answer:

$$-\lambda^3+9\lambda^2-8\lambda$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

What are the eigenvalues?

Characteristic polynomials

 3×3 matrices

Find the characteristic polynomial of the rabbit population matrix.

$$\left(\begin{array}{ccc} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{array}\right)$$

Answer:

 $-\lambda^3+3\lambda+2$

What are the eigenvalues?

Hint: We already know one eigenvalue! Polynomial long division ~->

$$(\lambda - 2)(-\lambda^2 - 2\lambda - 1)$$

Without the hint, could use the rational root theorem: any integer root of a polynomial with leading coefficient ± 1 divides the constant term.

Don't really need long division: the first and last terms of the quadratic are easy to find; can guess and check the other term.

Eigenvalues

Triangular matrices

Fact. The eigenvalues of a triangular matrix are the diagonal entries.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Why?

Algebraic multiplicity

The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

Example. Find the algebraic multiplicities of the eigenvalues for

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Fact. The sum of the algebraic multiplicities of the (real) eigenvalues of an $n \times n$ matrix is at most n.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Summary of Section 6.2

- The characteristic polynomial of A is $det(A \lambda I)$
- The roots of the characteristic polynomial for \boldsymbol{A} are the eigenvalues
- Techniques for 3 × 3 matrices:
 - Don't multiply out if there is a common factor
 - If there is no constant term then factor out λ
 - If the matrix is triangular, the eigenvalues are the diagonal entries

- Guess one eigenvalue using the rational root theorem, reverse engineer the rest (or use long division)
- Use the geometry to determine an eigenvalue
- Given an square matrix A:
 - The eigenvalues are the solutions to $det(A \lambda I) = 0$
 - Each λ_i -eigenspace is the solution to $(A \lambda_i I)x = 0$