Announcements: November 12

- Final Exam Dec 11 6-8:50p (cumulative!)
- No WeBWorK due this week
- No office hours this week
- Math Lab Monday-Thursday 11:15-5:15 Clough 280 → Schedule
- PLUS Sessions
 - ► Tue/Thu 6-7 Westside Activity Room
 - Mon/Wed 6-7 GT Connector

Chapter 7

Orthogonality

Section 7.1

Dot products and Orthogonality

Where are we?

We have learned to solve Ax = b and $Av = \lambda v$.

We have one more main goal.

What if we can't solve Ax=b? How can we solve it as closely as possible?

The answer relies on orthogonality.

Outline

- Dot products
- Length and distance
- Orthogonality

Dot product

Say $u=(u_1,\ldots,u_n)$ and $v=(v_1,\ldots,v_n)$ are vectors in \mathbb{R}^n

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$
$$= u_1 v_1 + \dots + u_n v_n$$
$$= u^T v$$

Example. Find $(1, 2, 3) \cdot (4, 5, 6)$.

Dot product

Some properties of the dot product

- $u \cdot v = v \cdot u$
- $\bullet \ (u+v) \cdot w = u \cdot w + v \cdot w$
- $(cu) \cdot v = c(u \cdot v)$
- $u \cdot u \ge 0$
- $u \cdot u = 0 \Leftrightarrow u = 0$

Length

Let v be a vector in \mathbb{R}^n

$$||v|| = \sqrt{v \cdot v}$$

$$= \text{length of } v$$

Why? Pythagorean Theorem

Fact.
$$||cv|| = |c| \cdot ||v||$$

v is a unit vector of ||v|| = 1

Problem. Find the unit vector in the direction of (1, 2, 3, 4).

Distance

The distance between v and w is the length of v - w (or w - v!).

Problem. Find the distance between (1,1,1) and (1,4,-3).

Orthogonality

Fact.
$$u \perp v \Leftrightarrow u \cdot v = 0$$

Why? Pythagorean theorem again!

$$u \perp v \Leftrightarrow ||u||^2 + ||v||^2 = ||u - v||^2$$

$$\Leftrightarrow u \cdot u + v \cdot v = u \cdot u - 2u \cdot v + v \cdot v$$

$$\Leftrightarrow u \cdot v = 0$$

Problem. Find a vector in \mathbb{R}^3 orthogonal to (1,2,3).

Summary of Section 7.1

- $u \cdot v = \sum u_i v_i$
- $u \cdot u = ||u||^2$ (length of u squared)
- The unit vector in the direction of v is $v/\|v\|$.
- The distance from u to v is $\|u-v\|$
- $u \cdot v = 0 \Leftrightarrow u \perp v$