Announcements: November 12

- Final Exam Dec 11 6-8:50p (cumulative!)
- WeBWorK 6.6 (Eigenvalues in Engineering) due Wednesday
- No office hours this week
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 250
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Tue 11-12 Skiles 230.
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 11-12 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday-Thursday 11:15-5:15 Clough 280 → Schedule
- Review sessions
 - ► Talha Wed 6-7:30, Skiles 368
 - Talha Thu 6-7:30, Skiles 269
- PLUS Sessions
 - Tue/Thu 6-7 Westside Activity Room
 - ► Mon/Wed 6-7 Westside Activity Room

Section 7.2 Orthogonal complements

Outline of Section 7.2

- Orthogonal complements
- Computing orthogonal complements

Orthogonal complements

$$\begin{split} W &= \text{subspace of } \mathbb{R}^n \\ W^\perp &= \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \} \end{split}$$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ?

Facts.

- 1. W^{\perp} is a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. $\dim W + \dim W^{\perp} = n$
- 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
- 5. The intersection of W and W^{\perp} is $\{0\}$.

Orthogonal complements

Finding them

Problem. Let $W = \mathrm{Span}\{(1,1,-1)\}$. Find the equation of the plane W^{\perp} .

Problem. Let $W=\mathrm{Span}\{(1,1,-1),(-1,2,1)\}$. Find a system of equations describing the line W^{\perp} .

Orthogonal complements

Finding them

Problem. Let $W = \mathrm{Span}\{(1,1,-1),(-1,2,1)\}$. Find a system of equations describing the line W^{\perp} .

Theorem. $A = m \times n$ matrix

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^{\perp}}$$

where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Why? Say that $w_1+w_1'=w_2+w_2'$ where w_1 and w_2 are in W and w_1' and w_2' are in W^{\perp} . Then $w_1-w_2=w_2'-w_1'$. But the former is in W and the latter is in W^{\perp} , so they must both be equal to 0.

→ Demo

▶ Demo

Next time: Find v_W and $v_{W^{\perp}}$.

Orthogonal Projections

Many applications, including:

Summary of Section 7.2

- $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$
- Facts:
 - 1. W^{\perp} is a subspace of \mathbb{R}^n
 - 2. $(W^{\perp})^{\perp} = W$
 - 3. $\dim W + \dim W^{\perp} = n$
 - 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
 - 5. The intersection of W and W^{\perp} is $\{0\}$.
- $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ (this is how you find W^{\perp})
- Every vector v can be written uniquely as $v=v_W+v_{W^\perp}$ with v_W in W and v_{W^\perp} in W^\perp