Announcements: November 25

- CIOS: Please do by Monday
- Final Exam Dec 11 6-8:50p (cumulative!)
- Final Exam locations:
 - Section G: Howey L3
 - Section H: Howey L4
- WeBWorK 7.3 & 7.5 not due or graded (for practice only)
- My office hours Wed 2-3 in Skiles 234
- CAS Study Session 3-5 Wed Dec 5 Clough 144
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 250
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Tue 11-12 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 11-12 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Review sessions tba
Review for Final Exam
Summary of Section 6.6

- A stochastic matrix is a non-negative square matrix where all of the columns add up to 1.
- Every stochastic matrix has 1 as an eigenvalue, and all other eigenvalues have absolute value at most 1.
- A positive stochastic matrix has 1-dimensional eigenspace and has a positive eigenvector.
- For a positive stochastic matrix, a positive 1-eigenvector with entries adding to 1 is called a steady state vector.
- For a positive stochastic matrix, all nonzero vectors approach the steady state vector under iteration.
- Steady state vectors tell us the importance of web pages (for example).

Suppose the internet has 3 pages. Page 1 links to 2, page 2 links to 3, and page 3 links to 1 and 2. Rank the web pages from most to least important.
Summary of Section 7.1

- \(u \cdot v = \sum u_i v_i \)
- \(u \cdot u = \|u\|^2 \) (length of \(u \) squared)
- The unit vector in the direction of \(v \) is \(v/\|v\| \).
- The distance from \(u \) to \(v \) is \(\|u - v\| \)
- \(u \cdot v = 0 \Leftrightarrow u \perp v \)

Suppose that \(u \) and \(v \) are vectors in \(\mathbb{R}^n \) and \(u \) is perpendicular to \(v \). Is it possible that \(u + v \) is perpendicular to \(v \)?
Summary of Section 7.2

- \(W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \} \)
- Facts:
 1. \(W^\perp \) is a subspace of \(\mathbb{R}^n \)
 2. \((W^\perp)^\perp = W\)
 3. \(\dim W + \dim W^\perp = n \)
 4. If \(W = \text{Span}\{w_1, \ldots, w_k\} \) then \(W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i \} \)
 5. The intersection of \(W \) and \(W^\perp \) is \{0\}.
- \((\text{Row } A)^\perp = \text{Nul } A\) (this is how you find \(W^\perp \))
- Every vector \(v \) can be written uniquely as \(v = v_W + v_{W^\perp} \) with \(v_W \) in \(W \) and \(v_{W^\perp} \) in \(W^\perp \)

Find the equation of the plane \(W \) in \(\mathbb{R}^3 \) perpendicular to the vector \((-1, 2, 1)\). Find a basis for \(W \). Find a basis for \(W^\perp \).
Summary of Section 7.3

- The **orthogonal projection** of v onto W is v_W
- v_W is the closest point in W to v.
- The distance from v to W is $\|v_W\|$.
- **Theorem.** Let $W = \text{Col}(A)$. For any v, the equation $A^T Ax = A^T v$ is consistent and v_W is equal to Ax where x is any solution.
- **Special case.** If $L = \text{Span}\{u\}$ then $v_L = \frac{u \cdot v}{u \cdot u} u$
- When the columns of A are independent, the standard matrix for orthogonal projection to $\text{Col}(A)$ is $A(A^T A)^{-1} A^T$
- Let W be a subspace of \mathbb{R}^n and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be $T(v) = v_W$. Then
 ▶ T is a linear transformation, etc.
- If P is the standard matrix then
 ▶ The 1–eigenspace of P is W (unless $W = 0$), etc.

Is it true that every diagonalizable matrix with eigenvalues 0 and 1 (and no others) is the standard matrix for orthogonal projection onto a subspace?

Compute the distance from the vector e_1 to the plane in \mathbb{R}^3 spanned by $(1, 0, 1)$ and $(0, 1, -1)$.
Summary of Section 7.5

- A least squares solution to $Ax = b$ is an \hat{x} in \mathbb{R}^n so that $A\hat{x}$ is as close as possible to b.
- The error is $\|A\hat{x} - b\|$.
- The least squares solutions to $Ax = b$ are the solutions to $(A^TA)x = (A^Tb)$.
- To find a best fit line/parabola/etc. write the general form of the line/parabola/etc. with unknown coefficients and plug in the given points to get a system of linear equations in the unknown coefficients.

Find the best fit line to the data points $(1, 0)$, $(2, 1)$, and $(3, 3)$.
Good luck!