Announcements: October 15

- Midterm 2 Friday in recitation, §3.5–4.4
- WeBWorK due Wednesday
- Supplemental problems and Practice exam on web site
- My office hours Wed 2-3 and Friday 9:30-10:30 in Skiles 234
- Review sessions
 - Talha Wed 6-7:30 Skiles 257
 - Talha Thu 6-7:30 Skiles 257
 - Arjun Thu 8-9:30 Skiles 256
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - Talha Tue/Thu 11-12 Clough 248
 - Athreya Tue 3-4 Skiles 230
 - Olivia Thu 3-4 Skiles 230
 - James Fri 12-1 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 9:30-10:30 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Math Lab Monday-Thursday 11:15-5:15 Clough 280
- PLUS Sessions
 - Tue/Thu 6-7 Clough 280
 - Mon/Wed 7-8 Clough 123

Review for Midterm 2

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Summary of Section 3.5

• A set of vectors $\{v_1, \ldots, v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

 $c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0$

has only the trivial solution. It is linearly dependent otherwise.

- The cols of \boldsymbol{A} are linearly independent
 - $\Leftrightarrow Ax = 0$ has only the trivial solution.
 - $\Leftrightarrow A$ has a pivot in each column
- $\bullet\,$ The number of pivots of A equals the dimension of the span of the columns of $A\,$
- The set $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent if and only if some v_i lies in the span of v_1, \ldots, v_{i-1} .

I have an 4×3 matrix A and a vector b in \mathbb{R}^3 , and Ax = b is inconsistent. Are the columns of A linearly dependent?

Section 3.6 Summary

- A subspace of \mathbb{R}^n is a subset V with:
 - 1. The zero vector is in V.
 - 2. If u and v are in V, then u + v is also in V.
 - 3. If u is in V and c is in \mathbb{R} , then $cu \in V$.
- Two important subspaces: Nul(A) and Col(A)
- Find a spanning set for $\operatorname{Nul}(A)$ by solving Ax=0 in vector parametric form
- Find a spanning set for $\operatorname{Col}(A)$ by taking pivot columns of A (not reduced A)
- Four things are the same: subspaces, spans, planes through 0, null spaces

Let V be the subset of \mathbb{R}^3 consisting of the x-axis, the y-axis, and the z-axis. Which properties of a subspace does V fail?

Find a spanning set for the plane in \mathbb{R}^3 defined by x + y - 2z = 0.

・ロト・西ト・モン・モー シック

Section 3.7 Summary

• A basis for a subspace V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

1.
$$V = \mathsf{Span}\{v_1, \ldots, v_k\}$$

- 2. v_1, \ldots, v_k are linearly independent
- The number of vectors in a basis for a subspace is the dimension.
- Find a basis for Nul(A) by solving Ax = 0 in vector parametric form
- Find a basis for Col(A) by taking pivot columns of A (not reduced A)
- Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n . Then

- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.

Find a basis $\{u, v, w\}$ for \mathbb{R}^3 where no vector has a zero entry.

Section 3.9 Summary

• Rank-Nullity Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$

Let A be an 4×6 nonzero matrix and suppose the columns of A are all the same. What is $\dim {\rm Nul}(A)?$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Section 4.1 Summary

- If A is an m×n matrix, then the associated matrix transformation T is given by T(v) = Av. This is a function with domain ℝⁿ and codomain ℝ^m and range Col(A).
- If A is $n \times n$ then T does something to \mathbb{R}^n ; basic examples: reflection, projection, scaling, shear, rotation

Find a matrix A so that the range of the matrix transformation T(v) = Av is the line y = 2x in \mathbb{R}^2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary of Section 4.2

- $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is one-to-one
 - the columns of A are
 - Ax = 0 has
 - A has a pivot
 - the range has dimension n
- $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is onto
 - the columns of A
 - A has a pivot
 - Ax = b is consistent
 - \blacktriangleright the range of T has dimension m

Let A be an 5×5 matrix. Suppose that dim Nul(A) = 0. Must it be true that $Ax = e_1$ is consistent?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary of 4.3

- A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if
 - T(u+v) = T(u) + T(v) for all u, v in \mathbb{R}^n .
 - T(cv) = cT(v) for all $v \in \mathbb{R}^n$ and c in \mathbb{R} .
- **Theorem.** Every linear transformation is a matrix transformation (and vice versa).
- The standard matrix for a linear transformation has its ith column equal to $T(e_i)$.

Find the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects over the line y = -x.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Summary of Section 4.4

- Composition: $(T \circ U)(v) = T(U(v))$ (do U then T)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- Matrix multiplication: the *i*th column of AB is $A(b_i)$
- The standard matrix for a composition of linear transformations is the product of the standard matrices.

- Warning!
 - AB is not always equal to BA
 - AB = AC does not mean that B = C
 - AB = 0 does not mean that A or B is 0

Find a 2×2 matrix A, not equal to I or 0, with $A^4 = I$.

Important terms

- linearly independent
- subspace
- column space
- null space
- basis
- dimension
- matrix transformation
- one-to-one
- onto
- linear transformation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

composition

Good luck!