Announcements: November 14

- Midterm 3 on §4.5-6.5 Friday in recitation
- WeBWorK 6.4, 6.5 due Wednesday
- My office hours Wed 2-3 and Friday 9:30-10:30 in Skiles 234
- TA office hours
 - Arjun Wed 3-4 Skiles 230
 - ► Talha Tue/Thu 11-12 Clough 250
 - ► Athreya Tue 3-4 Skiles 230
 - ▶ Olivia Thu 3-4 Skiles 230
 - ▶ James Tue 11-12 Skiles 230
 - Jesse Wed 9:30-10:30 Skiles 230
 - Vajraang Thu 11-12 Skiles 230
 - Hamed Thu 11:15-12, 1:45-2:45, 3-4:15 Clough 280
- Math Lab Monday-Thursday 11:15-5:15 Clough 280 Schedule
- Review sessions
 - ► Talha Wed 6-7:30, Skiles 368
 - ► Talha Thu 6-7:30, Skiles 269
- PLUS Sessions
 - ► Tue/Thu 6-7 Westside Activity Room
 - Mon/Wed 6-7 Westside Activity Room

Review for Midterm 3

- A is invertible if there is a matrix B (the inverse) with $AB = BA = I_n$
- If $ad bc \neq 0$ then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
- If A is invertible, then Ax = b has exactly one solution: $x = A^{-1}b$.
- $(A^{-1})^{-1} = A$ and $(AB)^{-1} = B^{-1}A^{-1}$
- Recipe for finding inverse: row reduce $(A | I_n)$.
- Say $A=n\times n$ matrix and $T:\mathbb{R}^n\to\mathbb{R}^n$ is the associated linear transformation. The following are equivalent.
 - (1) A is invertible
 - (2) T is invertible
 - (3) The reduced row echelon form of A is I_n , etc.

Suppose that A is a square matrix and det(A) = 0. Which can you conclude?

- (a) The linear transformation T(v) = Av is not onto.
- (b) A² is invertible.
- (c) A cannot be row reduced.
- (d) Two columns of A are equal.
- (e) The column space of A is a line.

• There is a recursive formula for the determinant of a square matrix:

$$\det(A) = a_{11}(\det(A_{11})) - a_{12}(\det(A_{12})) + \dots \pm a_{1n}(\det(A_{1n}))$$

- We can use the same formula along any row/column.
- There are special formulas for the 2×2 and 3×3 cases.

Say det is a function det : {matrices} $\to \mathbb{R}$ with:

- 1. $\det(I_n) = 1$
- 2. If we do a row replacement on a matrix, the determinant is unchanged
- 3. If we swap two rows of a matrix, the determinant scales by -1
- 4. If we scale a row of a matrix by k, the determinant scales by k
- Fact 1. There is such a function \det and it is unique.
- Fact 2. A is invertible $\Leftrightarrow \det(A) \neq 0$ important!
- Fact 3. $\det A = (-1)^{\# \text{row swaps used}} \left(\frac{\text{product of diagonal entries of row reduced matrix}}{\text{product of scalings used}} \right)$
- Fact 4. The function can be computed by any of the 2n cofactor expansions.
- Fact 5. det(AB) = det(A) det(B) important!
- Fact 6. $\det(A^T) = \det(A)$

Compute the determinant.

$$\left(\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

Fact 7. det(A) is signed volume of the parallelepiped spanned by cols of A.

Fact 8. If S is some subset of \mathbb{R}^n , then $\operatorname{vol}(T(S)) = |\det(A)| \cdot \operatorname{vol}(S)$.

Let P be the parallelogram with vertices (1,1), (2,1), (3,3), and (2,3). Let A be the matrix

$$\left(\begin{array}{cc} 5 & 8 \\ 2 & 3 \end{array}\right)$$

Let T(v) = Av be the associated linear transformation. What is the area of T(P)?

- If $v \neq 0$ and $Av = \lambda v$ then λ is an eigenvector of A with eigenvalue λ
- \bullet Given a matrix A and a vector v, we can check if v is an eigenvector for $A\colon \mathsf{just}$ multiply
- Given a matrix A and a number λ we can check if λ is an eigenvalue and find its eigenspace: solve $(A \lambda I)x = 0$
- Fact. A invertible $\Leftrightarrow 0$ is not an eigenvalue of A
- Fact. If $v_1 ldots v_k$ are distinct eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots \lambda_k$, then $\{v_1, \ldots, v_k\}$ are linearly independent.
- We can often see eigenvectors and eigenvalues without doing calculations

Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by reflection in the line y=5x. Find the eigenvalues and corresponding eigenvectors for the standard matrix of T.

Find a 3×3 matrix where e_1 is a 1-eigenvector, e_2 is a 2-eigenvector, and e_1+e_2 is a 3-eigenvector.

Find a 3×3 matrix with no zero entries and with determinant 0.

- The characteristic polynomial of A is $det(A \lambda I)$
- The roots of the characteristic polynomial for A are the eigenvalues
- Techniques for 3 × 3 matrices:
 - Don't multiply out if there is a common factor
 - If there is no constant term then factor out λ
 - If the matrix is triangular, the eigenvalues are the diagonal entries
 - Guess one eigenvalue using the rational root theorem, reverse engineer the rest (or use long division)
 - Use the geometry to determine an eigenvalue
- Given an square matrix A:
 - ▶ The eigenvalues are the solutions to $det(A \lambda I) = 0$
 - ▶ Each λ_i -eigenspace is the solution to $(A \lambda_i I)x = 0$

Find the eigenvalues for this bad boy:

$$\left(\begin{array}{ccc}
0 & -1 & -1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)$$

- A is diagonalizable if $A = CDC^{-1}$ where D is diagonal
- A diagonal matrix stretches along its eigenvectors by the eigenvalues, similar to a diagonal matrix
- If $A = CDC^{-1}$ then $A^k = CD^kC^{-1}$
- A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors \Leftrightarrow the sum of the geometric dimensions of the eigenspaces in n
- ullet If A has n distinct eigenvalues it is diagonalizable

Answer Yes/No/Maybe:

Suppose that A is a 4×4 matrix with eigenvalues 0, 1, 2, and 3. Is A diagonalizable?

Suppose that A is a 4×4 matrix with eigenvalues 0, 1, 2 and the dimension of the 2-eigenspace is 2. Is A diagonalizable?

Suppose that A is a 4×4 matrix with eigenvalues 0, 1, i and -i. Is A diagonalizable?

Suppose that A is a 4×4 matrix where the algebraic multiplicity of the eigenvalue 0 is 2 and the null space of A is a line. Is A diagonalizable?

- \bullet Complex numbers allow us to solve all polynomials completely, and find n eigenvectors for an $n\times n$ matrix
- If λ is an eigenvalue with eigenvector v then $\overline{\lambda}$ is an eigenvalue with eigenvector \overline{v}

Say that A is a matrix with i-eigenvector $\left(\begin{array}{c}1\\i\end{array}\right)$. Is $\left(\begin{array}{c}i\\1\end{array}\right)$ an eigenvector for the matrix?

Good luck!