Practice Midterm 2

 $(\ensuremath{\underline{I}})$ This is a preview of the published version of the quiz

Started: Oct 12 at 5:32pm

Quiz Instructions

Question 1		1 pts
Answer the followin	ng three true/false questions.	
(a) There is a 5x4 r	natrix whose rank is 2 and whose nullity is 2.	
[Select]	~	
(b) There is a 4x6 r [Select]	natrix whose rank is 5 and whose nullity is 1. ✓	
(c) If the column ve	ctors of a 3x3 matrix A span \mathbb{R}^3 , then A has 3 pivots.	
(c) If the column ve [Select]	ectors of a 3x3 matrix A span \mathbb{R}^3 , then A has 3 pivots.	
(c) If the column ve	ectors of a 3x3 matrix <i>A</i> span R ³ , then A has 3 pivots.	

Question 2	1 pts
Consider the subset $V=\{(x,y) ext{ in } \mathbb{R}^2 \; x + y =1 \}$ of $\mathbb{R}^2.$	
Does V contain the 0 vector? [Select]	
Is V closed under addition? [Select]	
Is V closed under scalar multiplication? [Select]	~

Question 4	1 pts
Suppose that A is a 11x3 matrix, B is a 3x4 matrix, and C is a 4x11 matrix. Which the following matrix multiplications is allowed? Select all that apply.	ch of
AB	

Question 5	1 pts
Which of the following statements are true for all 2x2 matrices A and B.	
(a) AB=BA [Select]	
(b) AB=0 (the zero matrix) implies that either A or B is 0.	
[Select]	
(c) A+B=B+A [Select]	

Question 6	1 pts
Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation given by counterclockwise rotation by degrees, and let A be the standard matrix for T	[,] 30
Which of the following statements must be true about A ?	
□ A is invertible	
□ A is not invertible	
□ rank(A)=1	
□ Nullity(A)=0	

Question 7	1 pts
If $m{u},m{v}$, and $m{w}$ form a basis of subspace $m{W}$, then $m{u}+m{v},m{v}$, and $m{w}$ also form a ba for $m{W}$.	asis
⊖ True	
⊖ False	

Question 8	1 pts
Find the value of k so that the matrix transformation for the following matrix is nonto. $\begin{pmatrix} 2 & 3 & 4 \\ 6 & 9 & k \end{pmatrix}$	not

Question 9	1 pts
Suppose that A is 10×9 matrix in row echelon form with 3 pivots. What is t dimension of $Nul(A)$?	he

Question 10

1 pts

Solve for the matrix X if $(AX + D)(BX + E)^{-1} = C$. Assume that all the matrices that arise in the solution are invertible.

$$igcap_{(A-CB)^{-1}(CE-D)} \ igcap_{(A-BC)(CE-D)^{-1}} \ igcap_{(A-BC)^{-1}(C-D)} \ igcap_{(CE-D)(A-BC)^{-1}} \ igcap_{(CE-D)(A-BC)^{-1}}$$

Question 12 1 pts
Let
$$A = \begin{pmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. Which of the following is a basis for Nul(A)?

Question 13

1 pts

Suppose A is a 7×4 matrix such that the associated linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^7$ is one-to-one. What is $\operatorname{rank}(A)$?

Question 14	1 pts
Which of the following linear transformations are invertible? Select all that apply	у.
Projection onto the x-axis, followed by dilation by a factor of 2	
Rotation by -47 degrees, followed by reflection across the y-axis	

Dilation by a factor of -0.001

 \Box Dilation by a factor of 3, followed by projection onto the line y = 2x

Question 171 ptsFor which of the following matrices A is the range of the associated matrix
transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ a line? Select all that apply. $\Box A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$ $\Box A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\Box A = \begin{pmatrix} -2 & 4 & 1 \\ 0 & -3 & 9 \\ 0 & 0 & 0 \end{pmatrix}$ $\Box A = \begin{pmatrix} 2 & -1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

Question 18

1 pts

Suppose that T is a linear transformation and

$$T\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\1\\1\end{pmatrix} \text{ and } T\begin{pmatrix}10\\11\end{pmatrix} = \begin{pmatrix}1\\1\\1\\1\end{pmatrix}$$

What is $T\begin{pmatrix}12\\13\end{pmatrix}$?

Question 20	1 pts
Suppose that A is an <i>n x n</i> matrix and T(v)=Av	Answer the following three questions.

[Select]	~	
the row echelon form of	A has no row of zeros	, is it possible for Ax=b to have
nfinitely many solutions?	[Select]	~
f Ax=b is consistent for all	b, can Ax=0 have infi	nitely many solutions?

	Not sav	ed	Submit Qui
	Not sav	ed	Submit Qu