Practice Midterm 3

(1) This is a preview of the published version of the quiz

Started: Nov 18 at 2:08pm

Quiz Instructions

If A is an $n \times n$ matrix, then the determinant of A is the same as the determinant of the reduced row echelon form of A . \bigcirc True \bigcirc False	Question 1	1 pts
 True False 	If ${m A}$ is an ${m n} imes {m n}$ matrix, then the determinant of , the reduced row echelon form of ${m A}$.	${f 4}$ is the same as the determinant of
⊖ False	⊖ True	
	⊖ False	
Question 2	Question 2	1 pts

If ${m A}$ is a ${m 3} imes {m 3}$ matrix with characteristic polynomial

$\det(A -$	$\lambda I) =$	$(1 - \lambda$	(-1 -	$\lambda)^2$,
------------	----------------	----------------	-------	----------------

then A must be invertible.

⊖ True

○ False

Question 3	1 pts

Question 4	1 pts
If A and B are 3×3 matrices that have the same eigenvalues and the same algebraic multiplicity for each eigenvalue, then $A = B$.	
⊖ True	
○ False	

Question 5	1 pts
Suppose A is an $n \times n$ matrix and λ is an eigenvalue of A . If v and w are tw different eigenvectors of A corresponding to λ , then $v - w$ is an eigenvector of	o of A .
⊖ True	
⊖ False	

1 pts

Say that $T: \mathbb{R}^2 o \mathbb{R}^2$ is the line that A is the standard matrix for	ear transformation that $m{T}$.	projects onto the $m{x}$ -axis, and
Write the eigenvalues of ${oldsymbol{A}}$, in in	creasing order.	
The eigenvalues are	and	

Question 71 ptsSuppose det
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 3.$$
Find det $\begin{pmatrix} -4a+d & -4b+e & -4c+f \\ a & b & c \\ g & h & i \end{pmatrix}$.

Find the eigenvalues of this matrix:
$$\begin{pmatrix} -1 & 0 \\ 4 & 5 \end{pmatrix}$$

The eigenvalues are and .

1 pts

Let $T: {f R}^2 o {f R}^2$ be the linear transformation whose standard matrix is

$$A = \begin{pmatrix} 2 & 5 \\ 3 & 2 \end{pmatrix}.$$

Find the area of T(S), where S is a square with area 2.

Enter an integer as your answer.

Question 14	1 pts
Consider the matrix $A=egin{pmatrix} c & 0 & 1 \ c & c & 4 \ 2 & 0 & 1 \end{pmatrix}$.	
Find all values of c (if there are any) so that $\det(A)=0$.	
○ c = 0 and c = 2	
○ c = 0 only	
⊖ c= -1 only	
○ c = 2 only	
⊖ c = 1 only	
\bigcirc There is no value of c that makes the determinant 0.	
\bigcirc c = 1 and c = -1	

○ -1 and -3			
○ 2 and -2			
\bigcirc 1 only			
\bigcirc 1 and 3			

Question 16	1 pts
Suppose A is a $2 imes 2$ matrix satisfying ${ m Tr}(A)=6$ and $\det(A)=9$. Which of the following is true?	
○ A is diagonalizable but A cannot be invertible.	
 It is not possible to determine whether A is invertible or diagonalizable from the inform given. 	nation
○ A is invertible, but A is not necessarily diagonalizable.	
○ A must be invertible and diagonalizable.	
○ A must be diagonalizable, but A is not necessarily invertible.	
○ A is invertible but A cannot be diagonalizable.	
○ A is neither invertible nor diagonalizable.	

Question 17	1 pts
Find a basis for the 2-eigenspace of $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.	
0	

Question 19
 1 pts

 Suppose
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} -1/3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}^{-1}$$
.

 Which of the following statements is true? Select only one answer.

 • Every nonzero vector in \mathbb{R}^2 is an eigenvector of A .

 • If $x = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, then $A^n x$ approaches the zero vector as n becomes very large.

 • Repeated multiplication by A pushes vectors towards $\operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.

Courage Soda and Dexter Soda compete for a market of 210 customers who drink

soda each day.

Today, Courage has 80 customers and Dexter has 130 customers.

Each day:

70% of Courage Soda's customers keep drinking Courage Soda, while 30% switch to Dexter Soda.

40% of Dexter Soda's customers keep drinking Dexter Soda, while 60% switch to Courage Soda.

Find a stochastic matrix A and a vector x so that Ax will give the number of customers for Courage Soda and Dexter Soda (in that order) tomorrow.

$$^{\bigcirc} A = egin{pmatrix} 0.7 & 0.6 \ 0.3 & 0.4 \end{pmatrix}, \hspace{1em} x = egin{pmatrix} 210 \ 210 \end{pmatrix}.$$

1 pts

$$A = \begin{pmatrix} 0.7 & 0.6 \\ 0.3 & 0.4 \end{pmatrix}, \quad x = \begin{pmatrix} 80 \\ 130 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix}, \quad x = \begin{pmatrix} 80 \\ 130 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix}, \quad x = \begin{pmatrix} 130 \\ 80 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{pmatrix}, \quad x = \begin{pmatrix} 130 \\ 80 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{pmatrix}, \quad x = \begin{pmatrix} 210 \\ 210 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0.7 & 0.6 \\ 0.3 & 0.4 \end{pmatrix}, \quad x = \begin{pmatrix} 130 \\ 80 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0.7 & 0.6 \\ 0.3 & 0.4 \end{pmatrix}, \quad x = \begin{pmatrix} 130 \\ 80 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0.7 & 0.6 \\ 0.3 & 0.4 \end{pmatrix}, \quad x = \begin{pmatrix} 80 \\ 130 \end{pmatrix}.$$

Question 21 1 pts Suppose $A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$. Find the number c so that the vector $\begin{pmatrix} c \\ i\sqrt{2} \end{pmatrix}$ the is an eigenvector corresponding to the eigenvalue $\lambda = 1 - i\sqrt{2}$.

Let
$$A = \begin{pmatrix} \cos(17^\circ) & -\sin(17^\circ) \\ \sin(17^\circ) & \cos(17^\circ) \end{pmatrix}$$
.
Which of the following is true about the eigenvalues of A?

 $\bigcirc A$ has one real eigenvalue and one complex eigenvalue

 \bigcirc **A** has two distinct complex eigenvalues

 \bigcirc **A** has no real eigenvalues and no complex eigenvalues.

 $\bigcirc A$ has one real eigenvalue with algebraic multiplicity 2

 \bigcirc *A* has two distinct real eigenvalues

Question 23

1 pts

Let A be the 2×2 matrix whose 2-eigenspace is the line $x_2 = 3x_1$ and whose null space is the line $x_2 = -x_1$.

Write A as the product CDC^{-1} where D is a diagonal 3×3 matrix.

$$\overset{\bigcirc}{} A = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}^{-1}$$
$$\overset{\bigcirc}{} A = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}^{-1}$$
$$\overset{\bigcirc}{} A = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}^{-1}$$
$$\overset{\bigcirc}{} A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}^{-1}$$

https://gatech.instructure.com/courses/145274/quizzes/210353/take?preview=1

Quiz: Practice Midterm 3

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}^{-1}$$

$$\bigcirc A = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}^{-1}$$

$$\bigcirc A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}^{-1}$$

Question 24

Consider an internet with three pages 1, 2, and 3.

Page 1 links to pages 2 and 3.

Page 2 links only to page 3.

Page 3 links to pages 1 and 2.

What is the importance matrix for this internet?

$\bigcirc \left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array} \right)$	
$A = \left[\begin{array}{ccc} 1/2 & 1 & 1/2 \end{array} \right]$	
$\begin{pmatrix} 1/2 & 1 & 1 \end{pmatrix}$	
\bigcirc (0 0 1/2)	
$A = \begin{bmatrix} 1/3 & 0 & 1/3 \end{bmatrix}$	
$\begin{pmatrix} 1/3 & 1/3 & 0 \end{pmatrix}$	
$\bigcirc 1/3 0 1/3 $	
$A = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$	
$\bigcirc \qquad (0 1/2 1/2)$	
$A = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	
$(1/2 \ 1/2 \ 0)$	
\bigcirc	

1 pts

Quiz: Practice Midterm 3

Question 25	1 pts
The city of Townsville has 600 inhabitants who eat each day at one of the three restaurants X, Y, and Z. The eating habits of the population are modeled by a positive stochastic matrix whose 1-eigenspace is spanned by $\begin{pmatrix} 6\\3\\g \end{pmatrix}$.	e
Today, X has 100 daily patrons, Y has 0 daily patrons, and Z has 500 daily patrons In the long run, roughly how many daily patrons will restaurant Y have?	rons.
Enter an integer as your answer.	

Not saved	Submit Quiz
l	