Practice Final Exam

(1) This is a preview of the published version of the quiz

Started: Nov 30 at 7:55pm

Quiz Instructions

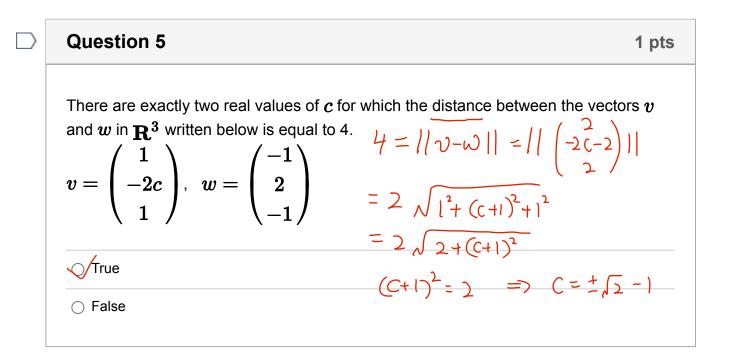
If $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors in \mathbf{R}^4 the $\{v_1 + v_3, v_2 + v_3, v_3\}$ $C_1(\mathcal{V}_1 + \mathcal{V}_3) + C_2(\mathcal{V}_2 + \mathcal{V}_3)$ is linearly independent. $\mathcal{V}_1 + \mathcal{V}_2 + \mathcal{V}_1 + C_2 \mathcal{V}_2 + (C_1 + C_2)$ $\mathcal{V}_1 + \mathcal{V}_2 + \mathcal{V}_3 + C_2 + (C_1 + C_2)$	1 µ
$\{v_1 + v_3, v_2 + v_3, v_3\} \qquad C_{\downarrow} (\mathcal{V}_1 + \mathcal{V}_3) + C_{2} (\mathcal{V}_1 + \mathcal{V}_3)$	ien
$\frac{v_1 v_2 v_3 u_4 u_p}{= 2 C_1 = C_2 = (C_1 + C_2 + C_3)$	-
	$(\mathbf{y}) = 0$
\checkmark True => $C_1 = C_2 = C_3 = 0$	

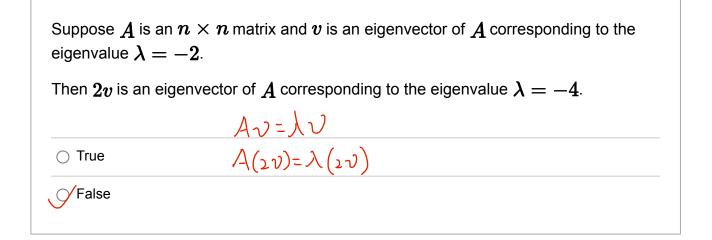
Question 2	1 pts
Suppose A , B , and C are $n imes n$ matrices.	
If A is invertible and $AB=AC$, then $B=C$.	
A-'AB=A-'AC	
True	
⊖ False	

\square	Question 3		1 pts

If A is a 6×4 matrix, then the equation $Ax = 0$ must	have a non-trivial solution.
 Gequations 4 variables True 	
False	
	no free

2	Question 4	1 pts
	If an $n imes n$ matrix A has two eigenvectors u and v corresponding to the sam eigenvalue λ , then u must be a scalar multiple of v .	e
	\bigcirc True $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
	False	





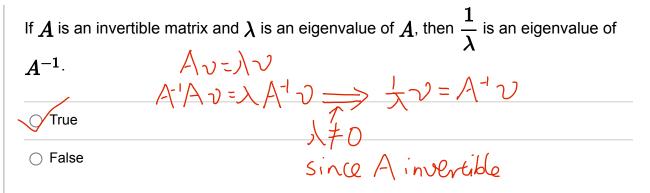
Question 7 1 pts Suppose W is a subspace of \mathbf{R}^n and x is a vector in \mathbf{R}^n . If the orthogonal projection of x onto W is the zero vector, then x is in W^{\perp} . True False

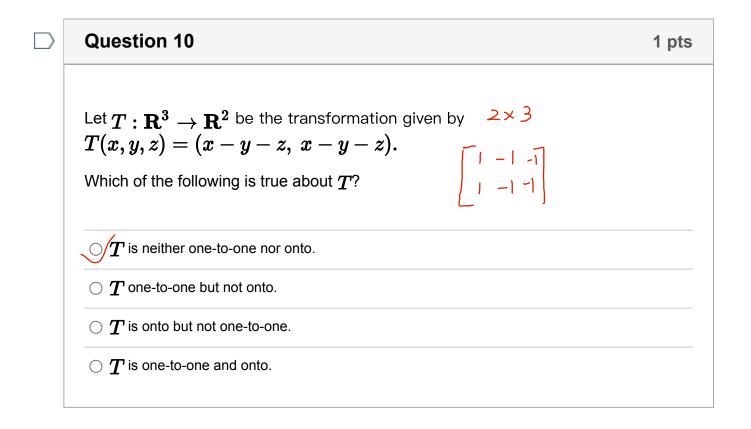
Suppose A is an invertible 3×3 matrix. Then the product of the second row of A and the third column of A^{-1} must equal 0.

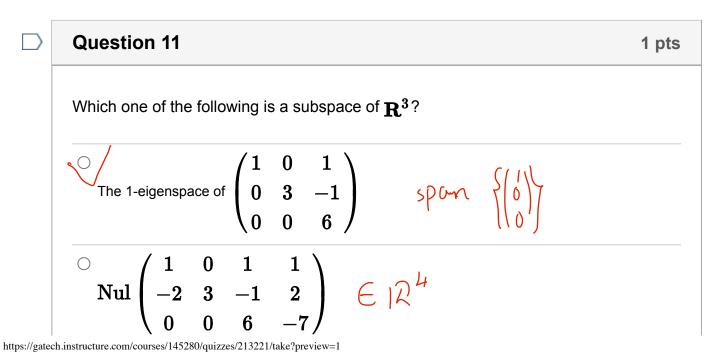
True O False

Question 9

1 pts



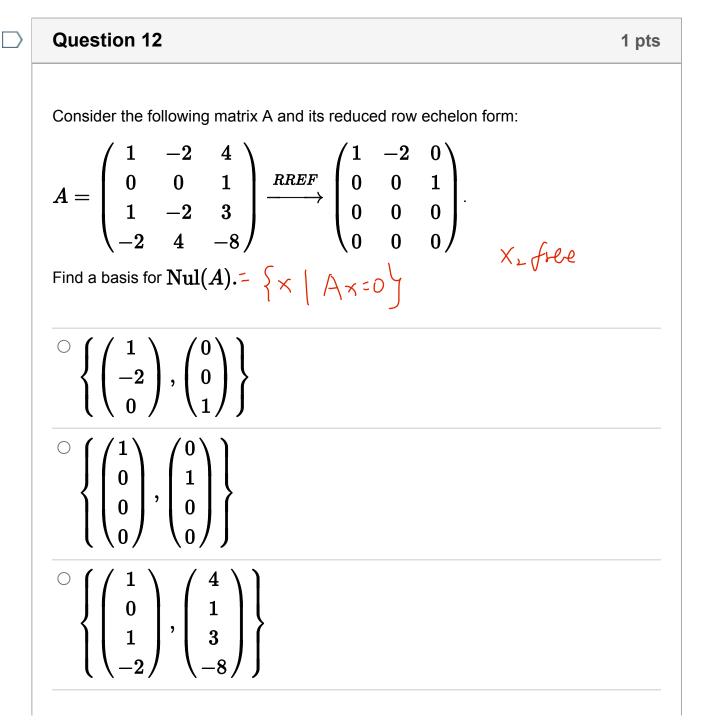


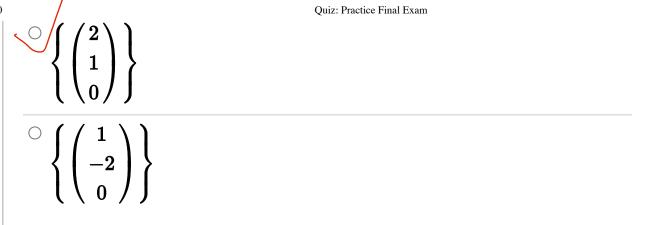


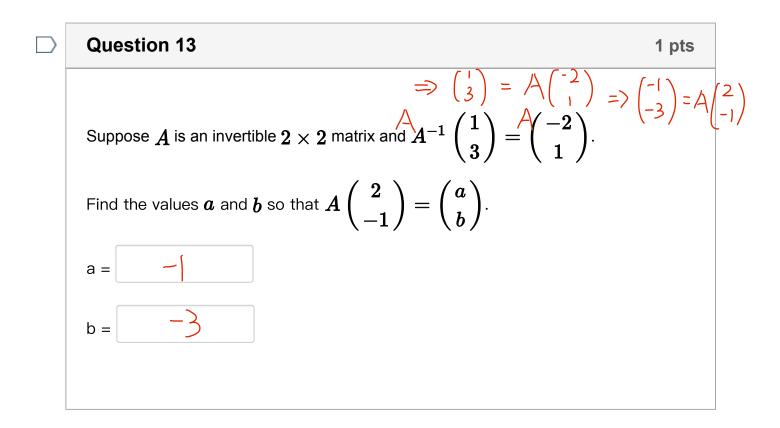
$$Col \begin{pmatrix} 1 & 0 & 1 \\ -2 & 3 & -1 \\ 0 & 0 & 6 \\ -1 & 1 & 0 \end{pmatrix}$$
 $(z \mid z)^{4}$

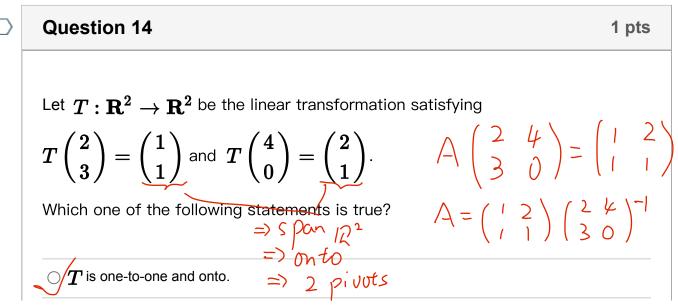
$$O The set of all (x, y, z) in \mathbb{R}^3 satisfying $x - y - z = 1$.

$$O None of these are subspaces of $\mathbb{R}^3$$$$$

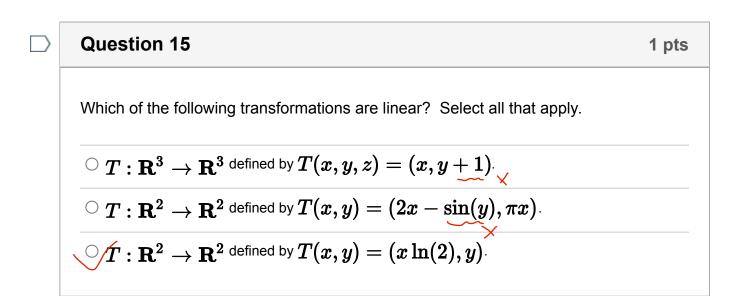








https://gatech.instructure.com/courses/145280/quizzes/213221/take?preview=1

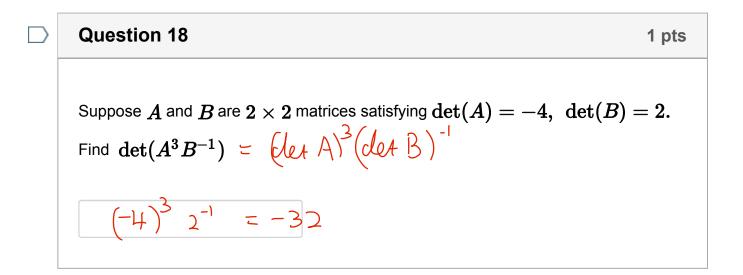


Find the numbers a and b so that the following matrix is stochastic.

$$A = \begin{pmatrix} a & 1/3 \\ 1/8 & b \end{pmatrix}.$$
$$a = \frac{7/8}{2/2}$$

Enter each answer as a fraction.

Question 17				1 pts
Fill in the blank	5:	AB	5 X 4 4×1	rinRe
If A is a $3 imes7$ $T(x)=AB$		matrix, then the lomain \mathbf{R}^p ,	transformation	



Question 191 pts
$$A v = 3v$$
 $Aw = -7w$ Suppose that v and w are eigenvectors of A with eigenvalues 3 and -7 respectively.Find $A(2v + 7w)$ in terms of v and w . $A(2v + 7w) = 2 \times 1$ $v + -7 \times 7$ $w = 2 \times 1$ $v + -7 \times 7$ $A v = 3 \times 2v$ $A v = -7(7w)$

Let
$$A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 2 \end{pmatrix}$.
Which statement below is true?
 $I3-2I$ has 2 pivots 1 free
 A and B are both diagonalizable
 A is diagonalizable, but B is not diagonalizable
 B is diagonalizable, but A is not diagonalizable
 N Neither A nor B is diagonalizable

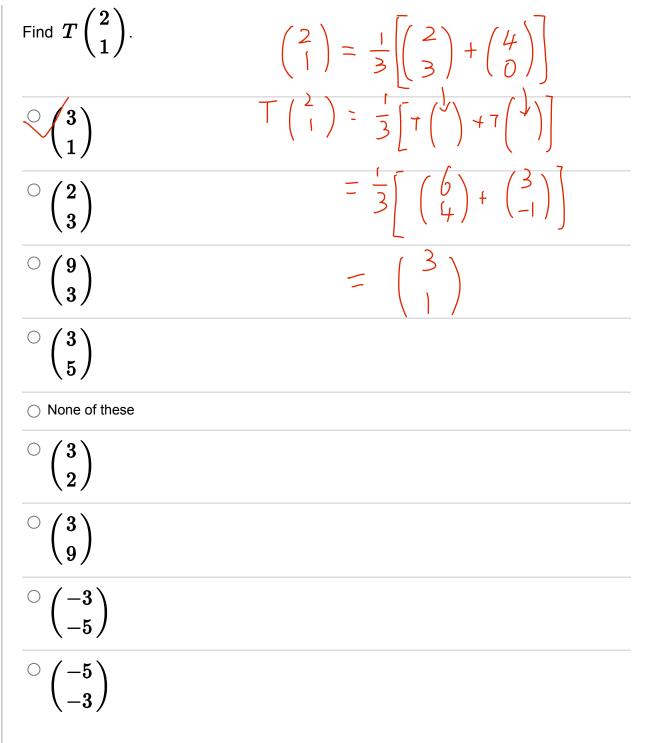
$$\square \quad \textbf{Question 21} \qquad \textbf{1 pts}$$
Suppose det $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 3.$
Find det $\begin{pmatrix} g & h & i \\ d & e & f \\ g - 2a & h - 2b & i - 2c \end{pmatrix}$.

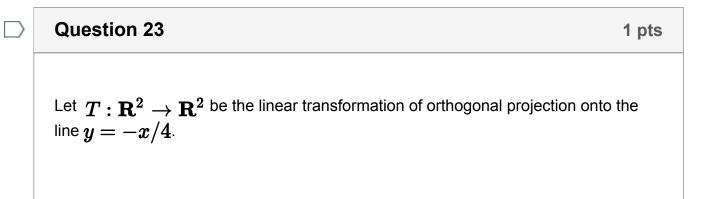
Question 22

1 pts

Suppose that $T: {f R}^2 o {f R}^2$ is a linear transformation satisfying

$$T\begin{pmatrix}2\\3\end{pmatrix}=\begin{pmatrix}6\\4\end{pmatrix}$$
 and $T\begin{pmatrix}4\\0\end{pmatrix}=\begin{pmatrix}3\\-1\end{pmatrix}$.





 \square

Quiz: Practice Final Exam

Write the value of
$$c$$
 so that $T\begin{pmatrix} 8\\c \end{pmatrix} = \begin{pmatrix} 8\\c \end{pmatrix}$. $\begin{pmatrix} 8\\c \end{pmatrix}$ on line $Y = -X/4$
 $(z = -8/4)$

Question 24

$$Let B = \begin{pmatrix} 7 & -8 \\ 4 & -5 \end{pmatrix}$$
. Write the eigenvalues of B in increasing order.
The smaller eigenvalue is -1, and the larger eigenvalue is

$$(\lambda - \gamma)(\lambda + 5)$$

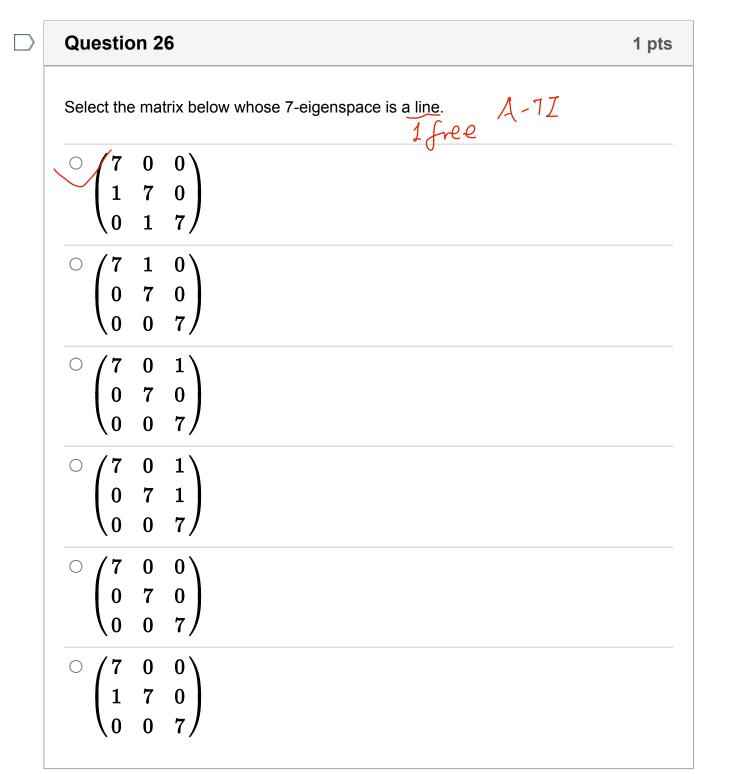
$$(\lambda - \gamma)(\lambda + 5) = 0$$

$$(\lambda - 3)(\lambda + 1) = 0$$

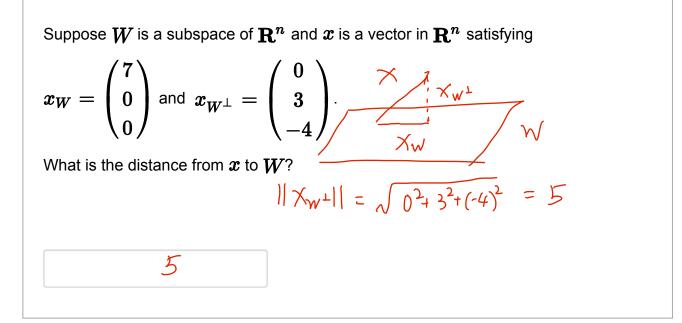
Question 251 ptsLet
$$T: \mathbf{R}^3 \to \mathbf{R}^3$$
 be the transformation that reflects vectors across the yz -plane, and let A be the standard matrix for T . $\land \begin{pmatrix} \delta \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \downarrow -1$ Which one of the following statements is true? $\land \begin{pmatrix} \delta \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \downarrow = \downarrow -1$ $\circ \dim(\operatorname{Nul}(A - I)) = 2$ and $\dim(\operatorname{Nul}(A + I)) = 1$ $\land \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \downarrow = \downarrow = 1$ $\circ \dim(\operatorname{Nul}(A - I)) = 1$ and $\dim(\operatorname{Nul}(A + I)) = 2$ $\land (0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \downarrow = \downarrow = 1$ $\circ \dim(\operatorname{Nul}(A - I)) = 1$ and $\dim(\operatorname{Nul}(A + I)) = 1$ $\land (0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \downarrow = \downarrow = 1$ $\circ \dim(\operatorname{Nul}(A - I)) = 1$ and $\dim(\operatorname{Nul}(A + I)) = 1$ $\circ \dim(\operatorname{Nul}(A)) = 2$ and $\dim(\operatorname{Nul}(A + I)) = 1$ $\circ \dim(\operatorname{Nul}(A)) = 1$ and $\dim(\operatorname{Nul}(A + I)) = 2$

https://gatech.instructure.com/courses/145280/quizzes/213221/take?preview=1

None of these

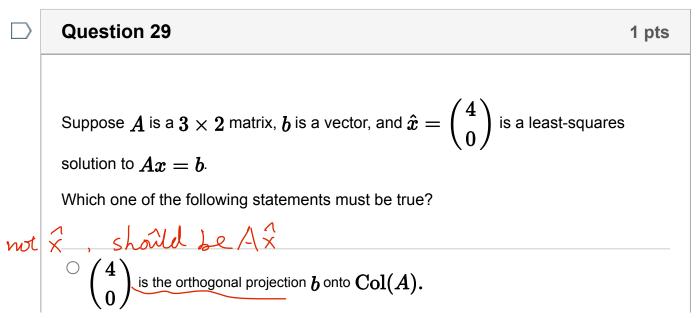


Question 27



Question 28

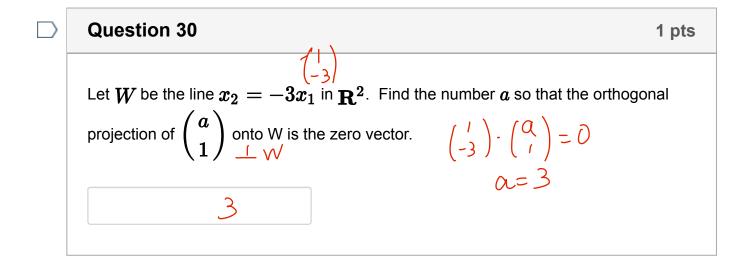
$$\begin{aligned}
\mathcal{U} \cdot \mathcal{V} \stackrel{0}{=} 0 \\
\text{Suppose } u \text{ and } v \text{ are orthogonal vectors in } \mathbf{R}^4 \text{ satisfying } ||u|| = 2 \text{ and } ||v|| = 3. \\
\text{Calculate the dot product } (3u - v) \cdot (2v) = 6 u \cdot \mathcal{V} - 2 \mathcal{V} \cdot \mathcal{V} \\
&= 0 - 2 \cdot 1 |\mathcal{V}||^2 \\
&= 2 \cdot 3^2
\end{aligned}$$



https://gatech.instructure.com/courses/145280/quizzes/213221/take?preview=1

•
$$\operatorname{rank}(A) = 2$$

• $A\begin{pmatrix} 4\\ 0 \end{pmatrix}$ is the closest vector to b in $\operatorname{Col}(A)$.
• The closest vector to b in $\operatorname{Col}(A)$ is $\begin{pmatrix} 4\\ 0 \end{pmatrix}$.



Question 31
1 pts
Suppose a positive stochastic matrix
$$A$$
 has 1-eigenspace equal to the span of $\begin{pmatrix} 2\\1 \end{pmatrix}$
. Let $v = \begin{pmatrix} 50\\10 \end{pmatrix}$. As n gets large, $A^n v$ approaches some vector $\begin{pmatrix} a\\b \end{pmatrix}$. Find a
and b .
 $a = 40$
 $A \begin{pmatrix} 2\\1 \end{pmatrix} \begin{pmatrix} 2\\1 \end{pmatrix} \begin{pmatrix} 2\\1 \end{pmatrix}$
 $a = 40$
 $A \begin{pmatrix} 50\\1 \end{pmatrix} = 60 A^n \begin{pmatrix} 5/6\\1/6 \end{pmatrix}$
 $b = 20$.
 $A \begin{pmatrix} 5/6\\1/6 \end{pmatrix} \begin{pmatrix} 5/6\\1/6 \end{pmatrix} \begin{pmatrix} 5/6\\1/6 \end{pmatrix} \begin{pmatrix} 60\\2/3\\1/3 \end{pmatrix}$

Question 321 ptsLet
$$W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$
Find the dimension of W .2 privates2

Select the matrix ${\it A}$ that satisfies

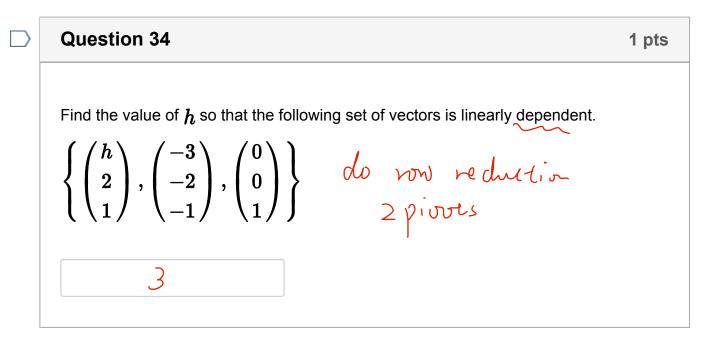
$$A\begin{pmatrix}1\\0\\1\end{pmatrix} = \begin{pmatrix}-1\\0\\-1\end{pmatrix}, A\begin{pmatrix}0\\1\\2\end{pmatrix} = \begin{pmatrix}0\\2\\4\end{pmatrix}, A\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}0\\-3\\0\end{pmatrix}.$$

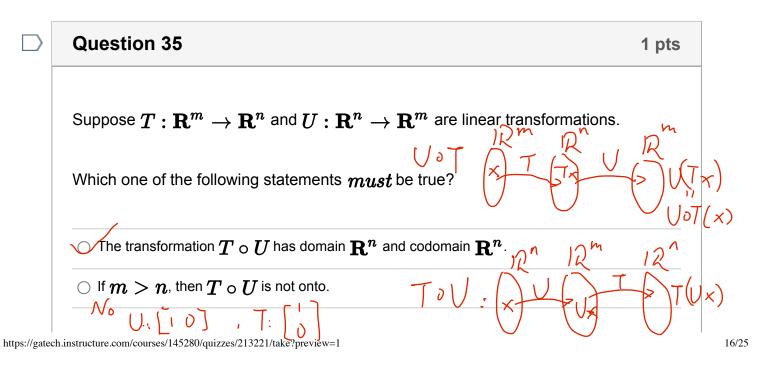
$$\lambda = \sqrt{2}$$

$$\lambda = 2$$

https://gatech.instructure.com/courses/145280/quizzes/213221/take?preview=1

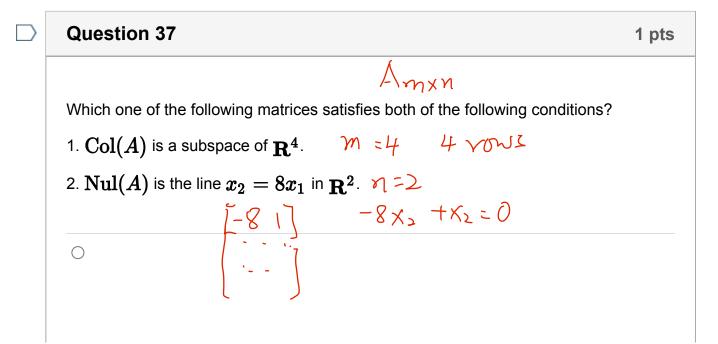
$^{\bigcirc} \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$	0 1 1	$ \begin{pmatrix} 1\\2\\0 \end{pmatrix} \begin{pmatrix} -\\0\\0 \end{pmatrix} $) 2	$\begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}^{-1}$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0 1 1	$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$
$^{\bigcirc}$ $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	0 1 2	$\begin{pmatrix} 0\\1\\0 \end{pmatrix} \begin{pmatrix} -\\0\\0 \end{pmatrix}$	1 0) 2) 0	$\begin{pmatrix} 0\\0\\-3 \end{pmatrix}^{-1}$	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	0 1 2	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$
⊖ None o	of the	se					

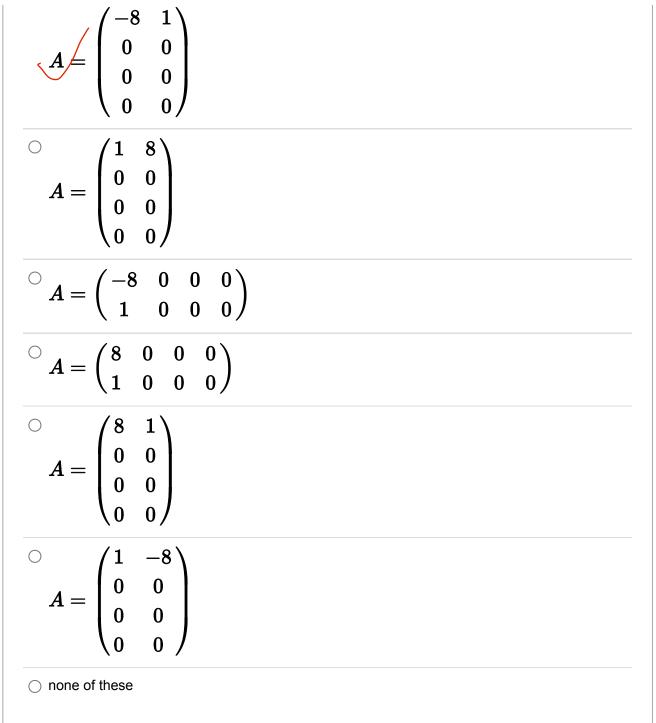




igcap U is one-to-one if for every x in ${f R}^n$, there is a y in ${f R}^m$ so that U(x)=y .

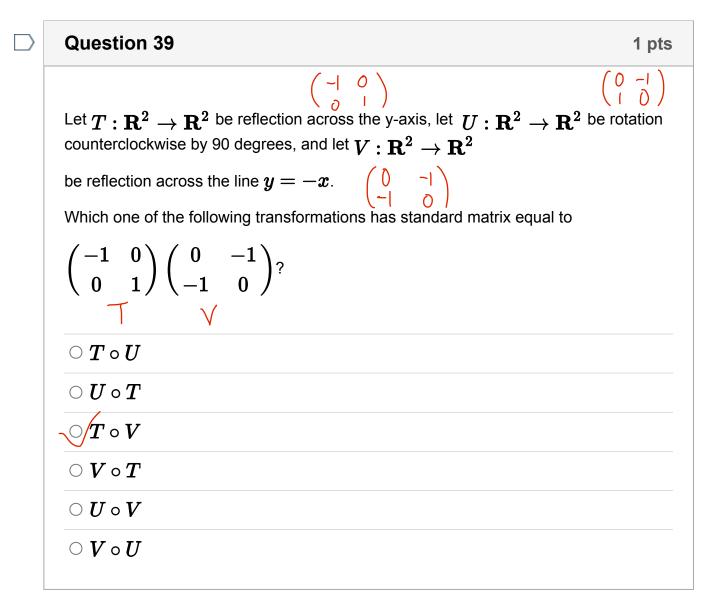
Some diagonalizable $6 imes 6$ matrix A has chara	cteristic polynomial
$\det(A-\lambda I)=(4-\lambda)^3\lambda^2(-3-\lambda)$. What is the dimension of the null space of A ?	X=0 algebraic Muriplicity A-0]
2	
○ 1	
⊖ 3	
○ 4	
○ 5	
○ 6	

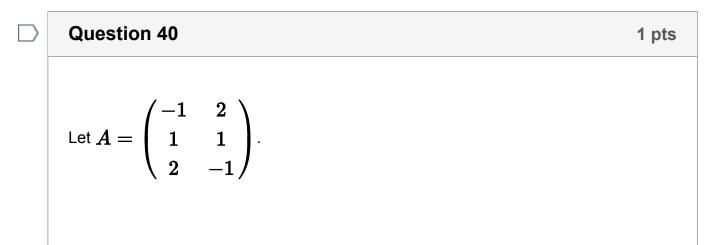




1 pts

Let W be subspace of \mathbb{R}^3 consisting of all (x, y, z) satisfying x = y = z. What is the dimension of W^{\perp} ? $= spon\left\{\begin{pmatrix} 1\\0\\-1\end{pmatrix}, \begin{pmatrix} -1\\0\\-1\end{pmatrix}\right\}$ _____





Find the value of
$$a$$
 so that $(\operatorname{Col} A)^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} a \\ -1 \\ 1 \end{pmatrix} \right\}$.
Must satisfy $\mathbb{D} \mathbb{R} \supseteq$
 $does not exist$
 $\begin{cases} \mathbb{D} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \in \mathbb{O} \\ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \in \mathbb{O} \\ \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \mathbb{O} \implies \mathbb{Q} = \mathbb{O} \\ \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \mathbb{O} \implies \mathbb{Q} = \mathbb{O} \end{cases}$

Question 41 1 pts Suppose A is the matrix that implements reflection across the line y = -4x in \mathbb{R}^2 . Which of the following statements is true? $\checkmark A$ is invertible and diagonalizable. $\land A$ is invertible but is not diagonalizable. $\land A$ is diagonalizable but not invertible. $\land A$ is neither invertible nor diagonalizable.

Question 421 ptsLet W be the subspace of \mathbb{R}^3 consisting of all (x, y, z) in \mathbb{R}^3 satisfying
x - 3y - z = 0, and let B be the matrix for orthogonal projection onto W.
Scheen with Which one of the following statements must be true? If none must be true, select
"none of these" as your answer.Which one of the following statements must be true? If none must be true, select
"none of these" as your answer. \bigvee
 \bigcirc \bigcirc \bigcirc \bigcirc

$Begin{pmatrix}4\\1\\1\end{pmatrix}=egin{pmatrix}4\\1\\1\end{pmatrix}$		$\begin{pmatrix} 4 \\ \\ \end{pmatrix}$	in W
$\bigcirc W^{\perp}$ is a plane in ${f R}^3$	\times	line	$span\left\{ \begin{pmatrix} 1\\ -3\\ -1 \end{pmatrix} \right\}$
\bigcirc The 1-eigenspace of $oldsymbol{B}$ is 1-o	limensior	nal. 🔨	2-dim
○ None of these			

Q	uestion 43 1 pts
	ppose A is a 4 x 4 matrix whose entries are real numbers, and suppose $1 + i$ and $-i$ are eigenvalues of A.
vvr	Hich statement below must be true? If none must be true, select "none of these" as ur answer.
R	A has no real eigenvalues.
Q 0	A has no real eigenvalues. $det(A) = 0 \chi not inversible \implies has \chi = 0$

	Question 44	1 pts
	Which of the following gives least-square $(0,1)$, $(2,-2)$, and $(3,2)$?	s line $y = Cx + D$ for the data points
https://gatecl	h.instructure.com/courses/145280/quizzes/213221/take?preview=1	$3 \frac{2}{2}$

21/25

20201120
Quit: Practice Fluid Exam
$$A = \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

 $\begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$
 $A^{T}A = \begin{pmatrix} D \\ D \end{pmatrix} = A^{T} \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$
 O We get C and D by solving
 $\begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$
 O We get C and D by solving
 $\begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix}$
 O We directly solve
 $\begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$
 O We get C and D by solving
 $\begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$
 O We get C and D by solving
 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

1 pts

Consider an internet with 4 pages.

Page 1 links only to page 2.

Page 2 links to pages 1 and 3.

Page 3 links to pages 2 and 4.

Page 4 links to pages 1, 2, and 3.

12 × 3 1 × 4 × 3

What is the importance matrix (also known as Google matrix) for this internet?

$$\begin{array}{c}
1 & 2 & 3 & 4 \\
0 & 1/2 & 0 & 1/3 \\
1 & 0 & 1/2 & 1/3 \\
0 & 1/2 & 0 & 1/3 \\
0 & 0 & 1/2 & 0 \\
\end{array}$$

$$\begin{array}{c}
A = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1/2 & 0 & 1/2 & 0 \\
0 & 1/2 & 0 & 1/2 \\
1/3 & 1/3 & 1/3 & 0
\end{array}$$

$$\begin{array}{c}
A = \begin{pmatrix}
1 & 1 & 0 & 0 \\
1/2 & 1 & 1/2 & 0 \\
0 & 1/2 & 1 & 1/2 \\
1/3 & 1/3 & 1/3 & 1
\end{array}$$

$$\begin{array}{c}
A = \begin{pmatrix}
1 & 1 & 0 & 0 \\
1/2 & 1 & 1/2 & 0 \\
0 & 1/2 & 1 & 1/2 \\
1/3 & 1/3 & 1/3 & 1
\end{array}$$

$$\begin{array}{c}
A = \begin{pmatrix}
1 & 1 & 2 & 0 & 1/3 \\
1 & 1 & 1/2 & 1/3 \\
0 & 1/2 & 1 & 1/2 \\
1/3 & 1/3 & 1/3 & 1
\end{array}$$

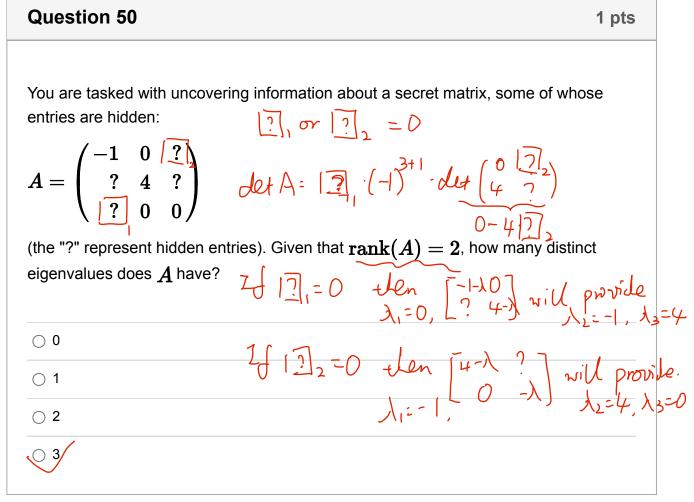
$$\begin{array}{c}
A = \begin{pmatrix}
1/2 & 1/3 & 0 & 1/4 \\
1/2 & 1/3 & 1/3 & 1/4 \\
0 & 1/3 & 1/3 & 1/4 \\
0 & 0 & 1/3 & 1/4
\end{array}$$

Let
$$T$$
 be a linear transformation such that $T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ and
 $T\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\-1\\-2 \end{pmatrix}$. Then, $T\begin{pmatrix} 2\\0 \end{pmatrix} = \begin{pmatrix} a\\b\\c \end{pmatrix}$, where $a =$
 $f = \begin{bmatrix} 0\\-2\\-2 \end{bmatrix}$. $f = \begin{bmatrix} -1\\-2\\-2 \end{bmatrix}$ and $c = \begin{bmatrix} -3\\-3\\-2 \end{bmatrix}$.

Question 47								1 pts	5
	/1	0	-1	0	0	15			
	0	7	5	0	0 19 0	0			
What is the determinant of	0	0	-2	0	0	0	2		
	0	0	0	1	0	0	<u>ŕ</u>		
	0	0	0	0	0 -1 0	0			
	0/	0	0	0	0	-1/	1		
[· 7 · (-2)· (1) · (-		(-1)) =	-	14				

>	Question 48	1 pts
	Suppose that A is a 6x7 matrix and B is a 7x6 matrix such that AB is the 6x6 id matrix. Is BA equal to the 7x7 identity matrix? [Select]	lentity
	RARBANO, Noverhoppens.	
	V V $A_X = A_Y$	

Let S be a region in the plane with area 3. Let T be the linear transformation $T(x_1, x_2) = (x_1 + x_2, x_1 - x_2)$. What is the area of T(S)? $= \begin{bmatrix} -2 \\ -2 \end{bmatrix}$. $A: \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ det(A) = -2



Quiz saved at 7:57pm Submit Quiz