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Linear. Algebra.

What is Linear Algebra?

Linear

• having to do with lines/planes/etc.

• For example, x+ y + 3z = 7, not sin, log, x2, etc

Algebra

• solving equations involving numbers and symbols

• from al-jebr (Arabic), meaning reunion of broken parts

• 9th century Abu Ja’far Muhammad ibn Muso al-Khwarizmi



Why a whole course?

Engineers need to solve lots of equations in lots of variables.

3x1 + 4x2 + 10x3 + 19x4 − 2x5 − 3x6 = 141

7x1 + 2x2 − 13x3 − 7x4 + 21x5 + 8x6 = 2567

−x1 + 9x2 + 3
2
x3 + x4 + 14x5 + 27x6 = 26

1
2
x1 + 4x2 + 10x3 + 11x4 + 2x5 + x6 = −15

Often, it’s enough to know some information about the set of solutions without
having to solve the equations at all!

In real life, the difficult part is often in recognizing that a problem can be
solved using linear algebra in the first place: need conceptual understanding.



Linear Algebra in Engineering

Almost every engineering problem, no
matter how huge, can be reduced to lin-
ear algebra:

Ax = b or

Ax = λx or

Ax ≈ x



Applications of Linear Algebra

Civil Engineering: How much traffic lies in the four unlabeled segments?

 
system of linear equations.



Applications of Linear Algebra

Chemistry: Balancing reaction equations

x C2H6 + y O2 → z CO2 + w H2O

 system of linear equations, one equation for each element.



Applications of Linear Algebra

Biology: In a population of rabbits...

• half of the new born rabbits survive their first year

• of those, half survive their second year

• the maximum life span is three years

• rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population in 2016 (in terms of the number of first, second, and
third year rabbits), then what is the population in 2017?

Say the numbers of first, second, and third year rabbits in year n are:

Fn, Sn, Tn

These relations can be represented using a matrix. 0 6 0
1
2

0 1
0 1

2
0



Demo

http://textbooks.math.gatech.edu/ila/demos/rabbits/book_demo.html


Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations



Rabbit populations

Demo

http://textbooks.math.gatech.edu/ila/demos/rabbits/book_demo.html


Applications of Linear Algebra

Geometry and Astronomy: Find the equation of a circle passing through 3
given points, say (1,0), (0,1), and (1,1). The general form of a circle is
a(x2 + y2) + bx+ cy + d = 0  system of linear equations.

Very similar to: compute the orbit of a planet: a(x2 + y2) + bx+ cy + d = 0

 system of linear equations



Applications of Linear Algebra

Google: “The 25 billion dollar eigenvector.” Each web page has some
importance, which it shares via outgoing links to other pages  system of
linear equations. Stay tuned!



Overview of the course

• Solve the matrix equation Ax = b

I Solve systems of linear equations using matrices and row reduction, and
inverses

I Solve systems of linear equations with varying parameters using parametric
forms for solutions, the geometry of linear transformations, the
characterizations of invertible matrices, and determinants

• Solve the matrix equation Ax = λx
I Solve eigenvalue problems through the use of the characteristic polynomial
I Understand the dynamics of a linear transformation via the computation of

eigenvalues, eigenvectors, and diagonalization

• Almost solve the equation Ax = b
I Find best-fit solutions to systems of linear equations that have no actual

solution using least squares approximations
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Section 1.1

Solving systems of equations



Outline of Section 1.1

• Learn what it means to solve a system of linear equations

• Describe the solutions as points in Rn

• Learn what it means for a system of linear equations to be inconsistent



Solving equations



Solving equations

What does it mean to solve an equation?

2x = 10

x+ y = 1

x+ y + z = 0

Find one solution to each. Can you find all of them?

A solution is a list of numbers. For example (3,−4, 1).



Solving equations

What does it mean to solve a system of equations?

x+ y = 2

y = 1

What about...
x+ y + z = 3

x+ y − z = 1

x− y + z = 1

Is (1, 1, 1) a solution? Is (2, 0, 1) a solution? What are all the solutions?

Soon, you will be able to see just by looking that there is exactly one solution.



Rn



Rn

R = denotes the set of all real numbers

Geometrically, this is the number line.

−3 −2 −1 0 1 2 3

Rn = all ordered n-tuples (or lists) of real numbers (x1, x2, x3, . . . , xn)

Solutions to systems of equations are exactly points in Rn. In other words, Rn

is where our solutions will live (the n depends on the system of equations).



Rn

When n = 2, we can visualize of R2 as the plane.

(1, 2)

(0,−3)



Rn

When n = 3, we can visualize R3 as the space we (appear to) live in.

(1,−1, 3)

(−2, 2, 2)



Rn

We can think of the space of all colors as (a subset of) R3:

red

b
lu

e

green



Rn

So what is R4? or R5? or Rn?

. . . go back to the definition: ordered n-tuples of real numbers

(x1, x2, x3, . . . , xn).

They’re still “geometric” spaces, in the sense that our intuition for R2 and R3

sometimes extends to Rn, but they’re harder to visualize.



Rn

Last time we could have used R3 to describe a rabbit population in a given
year: (first year, second year, third year).

Similarly, we could have used R4 to label the amount of traffic (x, y, z, w)
passing through four streets.

x

y

z

w

We’ll make definitions and state theorems that apply to any Rn, but we’ll only
draw pictures in R2 and R3.



Rn

and QR codes

This is a 21× 21 QR code. We can also think of this as an element of Rn.

How? Which n?

What about a greyscale image?

This is a powerful idea: instead of thinking of a QR code as 441 pieces of
information, we think of it as one piece of information.



Visualizing solutions: a preview



One Linear Equation

What does the solution set of a linear equation look like?

x+ y = 1 a line in the plane: y = 1− x



One Linear Equation

What does the solution set of a linear equation look like?

x+ y + z = 1 a plane in space:

x

y

z



One Linear Equation
Continued

What does the solution set of a linear equation look like?

x+ y + z + w = 1 a “3-plane” in “4-space”. . .



Systems of Linear Equations

What does the solution set of a system of more than one linear equation look
like?

x− 3y = −3

2x+ y = 8

. . . is the intersection of two
lines, which is a point in this
case.

What are the other possibilities for two equations with two variables?

What if there are more variables? More equations?



Is the plane in R3 from the previous example equal to
R2? What about the xy-plane in R3?

1. yes + yes

2. yes + no

3. no + yes

4. no + no

Poll

x

y

z



Consistent versus Inconsistent

We say that a system of linear equations is consistent if it has a solution and
inconsistent otherwise.

x+ y = 1

x+ y = 2

Why is this inconsistent?

What are other examples of inconsistent systems of linear equations?



Parametric form

The equation y = 1− x is an implicit equation for the line in the picture.

It also has a parametric form: (x, 1− x)

Similarly the equation x+ y + z = 1 is an implicit equation. One parametric
form is: (x, y, 1− x− y).

x

y

z



Parametric form

The equation y = 1− x is an implicit equation for the line in the picture.

It also has a parametric form: (x, 1− x)

Similarly the equation x+ y + z = 1 is an implicit equation. One parametric
form is: (x, y, 1− x− y).

x

y

z

What is an implicit equation and a parametric form for the xy-plane in R3?



Parametric form

The system of equations
2x+ y + 12z = 1

x+ 2y + 9z = −1

is the implicit form for the line of intersection in the picture.

The line of intersection also has a parametric form: (1− 5z,−1− 2z, z)

We think of the former as being the problem and the latter as being the explicit
solution. One of our first tasks this semester is to learn how to go from the
implicit form to the parametric form.



Summary of Section 1.1

• A solution to a system of linear equations in n variables is a point in Rn.

• The set of all solutions to a single equation in n variables is an
(n− 1)-dimensional plane in Rn

• The set of solutions to a system of m linear equations in n variables is the
intersection of m of these (n− 1)-dimensional planes in Rn.

• A system of equations with no solutions is said to be inconsistent.

• Line and planes have implicit equations and parametric forms.



Section 1.2

Row reduction



Outline of Section 1.2

• Solve systems of linear equations via elimination

• Solve systems of linear equations via matrices and row reduction

• Learn about row echelon form and reduced row echelon form of a matrix

• Learn the algorithm for finding the (reduced) row echelon form of a matrix

• Determine from the row echelon form of a matrix if the corresponding
system of linear equations is consistent or not.



Solving systems of linear equations by
elimination



Example

Solve:

−y + 8z = 10

5y + 10z = 0

How many ways can you do it?



Example

Solve:

−x+ y + 3z = −2
2x− 3y + 2z = 14

3x+ 2y + z = 6

Hint: Eliminate x!



Solving systems of linear equations with
matrices



Example

Solve:

−y + 8z = 10

5y + 10z = 0

It is redundant to write x and y again and again, so we rewrite using
(augmented) matrices. In other words, just keep track of the coefficients, drop
the + and = signs. We put a vertical line where the equals sign is.(
−1 8 10
5 10 0

)
 



Example

Solve:

−x+ y + 3z = −2
2x− 3y + 2z = 14

3x+ 2y + z = 6

Again we rewrite using augmented matrices...

 1 2 3 6
2 −3 2 14
3 1 −1 −2

→
 1 0 0 1

0 1 0 −2
0 0 1 3


Thus, x = 1, y = −2, z = 3.



Row operations

Our manipulations of matrices are called row operations:

row swap, row scale, row replacement

If two matrices differ by a sequence of these three row operations, we say they
are row equivalent.

Goal: Produce a system of equations like:

x = 2

y = 1

z = 5

What does this look like in matrix form?

 1 0 0 A
0 1 0 B
0 0 1 C





Row operations

Why do row operations not change the solution?

Solve:

x+ y = 2

−2x+ y = −1

System has one solution, x = 1, y = 1.

What happens to the two lines as you do row operations?(
1 1 2
−2 1 −1

)
 

→
(

1 1 2
0 3 3

)
→
(

1 1 2
0 1 1

)

They pivot around the solution!



Row Reduction and Echelon Forms



Row echelon form

Remember our goal.

Goal: Produce a system of equations like

x = 2

y = 1

z = 5

Or at least...

Easier goal: Produce a system of equations like

x+ 5y − 3z = 2

y + 7z = 1

z = 5



Row Reduction and Echelon Forms

A matrix is in row echelon form if

1. all zero rows are at the bottom, and

2. each leading (nonzero) entry of a row is to the right of the leading entry
of the row above.


? ? ? ? ?
0 ? ? ? ?
0 0 0 ? ?
0 0 0 0 0



This system is easy to solve using back substitution.

The pivot positions are the leading entries in each row.



Reduced Row Echelon Form

A system is in reduced row echelon form if also:

4. the leading entry in each nonzero row is 1

5. each leading entry of a row is the only nonzero entry in its column

For example: 
1 0 ? 0 ?
0 1 ? 0 ?
0 0 0 1 ?
0 0 0 0 0


This system is even easier to solve.

Important. In any discussion of row echelon form, we ignore any vertical lines!

Can every matrix be put in reduced row echelon form?



Reduced Row Echelon Form

Which are in reduced row echelon form?(
1 0
0 2

) (
0 0 0
0 0 0

)


0
1
0
0

 (
0 1 0 0

) (
0 1 8 0

)

(
1 17 0
0 0 1

)  1 0 0 1
0 1 0 1
0 0 0 0



Poll

REF:

1. all zero rows are at the bottom, and

2. each leading (nonzero) entry of a row is to the right of the leading entry of the row above.

RREF:

4. the leading entry in each nonzero row is 1

5. each leading entry of a row is the only nonzero entry in its column



Row Reduction

Theorem. Each matrix is row equivalent to one and only one matrix in
reduced row echelon form.

We’ll give an algorithm. That shows a matrix is equivalent to at least one
matrix in reduced row echelon form.



Row Reduction Algorithm

To find row echelon form:

Step 1 Swap rows so a leftmost nonzero entry is in 1st row (if needed)

Step 2 Scale 1st row so that its leading entry is equal to 1

Step 3 Use row replacement so all entries below this 1 (or, pivot) are 0

Then cover the first row and repeat the three steps.

To then find reduced row echelon form:

• Use row replacement so that all entries above the pivots are 0.

Examples. 1 2 3 9
2 −1 1 8
3 0 −1 3

  0 7 −4 2
2 4 6 12
3 1 −1 −2

  4 −5 3 2
1 −1 −2 −6
4 −4 −14 18


Interactive Row Reducer

https://textbooks.math.gatech.edu/ila/demos/rrinter.html


Solutions of Linear Systems

We want to go from reduced row echelon forms to solutions of linear systems.

Solve the linear system associated to:(
1 0 5
0 1 2

)
What are the solutions? Say the variables are x and y.

The variable x3 can be anything (it is free), and

x2 = 1− 2x3

x1 = −5x3

Geometrically, the solution is a point.



Solutions of Linear Systems: Consistency

Solve the linear system associated to:(
1 0 5 0
0 0 0 1

)

Say the variables are x, y, and z.

The second row gives 0 = 1. The associated system is inconsistent.

A system of equations is inconsistent exactly when the corresponding
augmented matrix has a pivot in the last column.



Example with a parameter

For which values of h does the following system have a solution?

x+ y = 1

2x+ 2y = h

Solve this by row reduction and also solve it by thinking geometrically.



Summary of Section 1.2

• To solve a system of linear equations we can use the method of
elimination.

• We can more easily do elimination with matrices. The allowable moves are
row swaps, row scales, and row replacements. This is called row reduction.

• A matrix in row echelon form corresponds to a system of linear equations
that we can easily solve by back substitution.

• A matrix in reduced row echelon form corresponds to a system of linear
equations that we can easily solve just by looking.

• We have an algorithm for row reducing a matrix to row echelon form.

• The reduced row echelon form of a matrix is unique.

• Two matrices that differ by row operations are called row equivalent.

• A system of equations is inconsistent exactly when the corresponding
augmented matrix has a pivot in the last column.



1.3 Parametric Form



Outline of Section 1.3

• Find the parametric form for the solutions to a system of linear equations.

• Describe the geometric picture of the set of solutions.



Free Variables

We know how to understand the solution to a system of linear equations when
every column to the left of the vertical line has a pivot. For instance:(

1 0 5
0 1 2

)

If the variables are x and y what are the solutions?



Free Variables

How do we solve a system of linear equations if the row reduced matrix has a
column without a pivot? For instance:(

1 0 5 0
0 1 2 1

)
represents two equations:

x1 + 5x3 = 0

x2 + 2x3 = 1

There is one free variable x3, corresponding to the non-pivot column.

To solve, we move the free variable to the right:

x1 = −5x3

x2 = 1− 2x3

x3 = x3 (free; any real number)

This is the parametric solution. We can also write the solution as:

(−5x3, 1− 2x3, x3)

What is one particular solution? What does the set of solutions look like?



Free Variables

Solve the system of linear equations in x1, x2, x3, x4:

x1 + 5x3 = 0

x4 = 0

So the associated matrix is: (
1 0 5 0 0
0 0 0 1 0

)

To solve, we move the free variable to the right:

x1 = −5x3

x2 = x2 (free)

x3 = x3 (free)

x4 = 0

Or: (−5x3, x2, x3, 0). This is a plane in R4.

The original equations are the implicit equations for the solution. The answer
to this question is the parametric solution.



Free variables
Geometry

If we have a consistent system of linear equations, with n variables and k free
variables, then the set of solutions is a k-dimensional plane in Rn.

Why does this make sense?

t = 0

t = 1

t = −1

x

y

z
(t, w) = (1,−1)

(t, w) = (2, 2)

(t, w) = (−1, 1)



A linear system has 4 variables and 3 equations. What
are the possible solution sets?

1. nothing

2. point

3. two points

4. line

5. plane

6. 3-dimensional plane

7. 4-dimensional plane

Poll



Implicit versus parametric equations of planes

Find a parametric description of the plane

x+ y + z = 1

The original version is the implicit equation for the plane. The answer to this
problem is the parametric description.



Summary

There are three possibilities for the reduced row echelon form of the augmented
matrix of system of linear equations.

1. The last column is a pivot column.
 the system is inconsistent.  1 0 0

0 1 0
0 0 1


2. Every column except the last column is a pivot column.
 the system has a unique solution. 1 0 0 ?

0 1 0 ?
0 0 1 ?


3. The last column is not a pivot column, and some other column isn’t either.
 the system has infinitely many solutions; free variables correspond to
columns without pivots. (

1 ? 0 ? ?
0 0 1 ? ?

)



Typical exam questions

True/False: If a system of equations has 100 variables and 70 equations, then
there must be infinitely many solutions.

True/False: If a system of equations has 70 variables and 100 equations, then
it must be inconsistent.

How can we tell if an augmented matrix corresponds to a consistent system of
linear equations?

If a system of linear equations has finitely many solutions, what are the possible
numbers of solutions?



Chapter 2

System of Linear Equations: Geometry



Where are we?

In Chapter 1 we learned to solve any system of linear equations in any number
of variables. The answer is row reduction, which gives an algebraic solution. In
Chapter 2 we put some geometry behind the algebra. It is the geometry that
gives us intuition and deeper meaning. There are three main points:

Sec 2.3: Ax = b is consistent ⇔ b is in the span of the columns of A.

Sec 2.4: The solutions to Ax = b are parallel to the solutions to Ax = 0.

Sec 2.9: The dim’s of {b : Ax = b is consistent} and {solutions to Ax = b}
add up to the number of columns of A.



Section 2.1

Vectors



Outline

• Think of points in Rn as vectors.

• Learn how to add vectors and multiply them by a scalar

• Understand the geometry of adding vectors and multiplying them by a
scalar

• Understand linear combinations algebraically and geometrically



Vectors

A vector is a matrix with one row or one column. We can think of a vector
with n rows as:

• a point in Rn

• an arrow in Rn

To go from an arrow to a point in Rn, we subtract the tip of the arrow from the
starting point. Note that there are many arrows representing the same vector.

Adding vectors / parallelogram rule Demo

Scaling vectors Demo

A scalar is just a real number. We use this term to indicate that we are scaling
a vector by this number.

http://textbooks.math.gatech.edu/ila/demos/vector-add.html
http://textbooks.math.gatech.edu/ila/demos/vector-mul.html


Linear Combinations

A linear combination of the vectors v1, . . . , vk is any vector

c1v1 + c2v2 + · · ·+ ckvk

where c1, . . . , ck are real numbers.

v

w

Let v =

(
1
2

)
and w =

(
1
0

)
.

What are some linear combinations of v and w?



Is there a vector in R2 that is not a linear combination
of v and w?

• yes

• no

Poll

v

w



Linear Combinations

What are some linear combinations of (1, 1)?

What are some linear combinations of (1, 1) and (2, 2)?

What are some linear combinations of (0, 0)?



Summary of Section 2.1

• A vector is a point/arrow in Rn

• We can add/scale vectors algebraically & geometrically (parallelogram
rule)

• A linear combination of vectors v1, . . . , vk is a vector

c1v1 + · · ·+ ckvk

where c1, . . . , ck are real numbers.



Typical exam questions

True/False: For any collection of vectors v1, . . . , vk in Rn, the zero vector in
Rn is a linear combination of v1, . . . , vk.

True/False: The vector (1, 1) can be written as a linear combination of (2, 2)
and (−2,−2) in infinitely many ways.

Suppose that v is a vector in Rn, and consider the set of all linear
combinations of v. What geometric shape is this?



Section 2.2

Vector Equations and Spans



Outline of Section 2.2

• Learn the equivalences:

vector equations↔ augmented matrices↔ linear systems

• Learn the definition of span

• Learn the relationship between spans and consistency



Linear Combinations

Is

 8
16
3

 a linear combination of

 1
2
6

 and

 −1
−2
−1

?

Write down an equation in order to solve this problem. This is called a vector
equation.

Notice that the vector equation can be rewritten as a system of linear
equations. Solve it!



Linear combinations, vector equations, and linear systems

In general, asking:

Is b a linear combination of v1, . . . , vk?

is the same as asking if the vector equation

x1v1 + · · ·+ xkvk = b

is consistent, which is the same as asking if the system of linear equations
corresponding to the augmented matrix | | | |

v1 v2 · · · vk b
| | | |

 ,

is consistent.

Compare with the previous slide! Make sure you are comfortable going back
and forth between the specific case (last slide) and the general case (this slide).



Span

Essential vocabulary word!

Span{v1, v2, . . . , vk} = {x1v1 + x2v2 + · · ·+ xkvk | xi in R} ← (set builder notation)

= the set of all linear combinations of vectors v1, v2, . . . , vk

= plane through the origin and v1, v2, . . . , vk.

What are the possibilities for the span of two vectors in R2?

Demo

What are the possibilities for the span of three vectors in R3?

Demo

Conclusion: Spans are planes (of some dimension) through the origin, and the
dimension of the plane is at most the number of vectors you started with and is
at most the dimension of the space they’re in.

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,2&v2=1,0&range=5&labels=v,w
http://textbooks.math.gatech.edu/ila/demos/spans.html?labels=u,v,w&range=8


Span

Essential vocabulary word!

Span{v1, v2, . . . , vk} = {x1v1 + x2v2 + · · ·xkvk | xi in R}
= the set of all linear combinations of vectors v1, v2, . . . , vk

= plane through the origin and v1, v2, . . . , vk.

Four ways of saying the same thing:

• b is in Span{v1, v2, . . . , vk} ← geometry

• b is a linear combination of v1, . . . , vk

• the vector equation x1v1 + · · ·+ xkvk = b has a solution ← algebra

• the system of linear equations corresponding to | | | |
v1 v2 · · · vk b
| | | |

 ,

is consistent.

Demo Demo

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=8,16,3&range=20&camera=3,.5,1.5&vers=a327fd
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=2,-2,0&tlabel=b&range=8&camera=3,.5,1.5


Application: Additive Color Theory

Consider now the two colors  180
50
200

 ,

 100
150
100



For which h is (116, 130, h) in the span of those two colors?

40 80 120 160 200 240



Summary of Section 2.2

• vector equations↔ augmented matrices↔ linear systems

• Checking if a linear system is consistent is the same as asking if the
column vector on the end of an augmented matrix is in the span of the
other column vectors.

• Spans are planes, and the dimension of the plane is at most the number of
vectors you started with.



Typical exam questions

Is

 8
16
1

 in the span of

 1
2
6

 and

 −1
−2
−1

?

Write down the vector equation for the previous problem.

True/False: The vector equation x1v1 + · · ·+ xkvk = 0 is always consistent.

True/False: It is possible for the span of 3 vectors in R3 to be a line.

True/False: the plane z = 1 in R3 is a span.



Section 2.3

Matrix equations



Outline Section 2.3

• Understand the equivalences:

linear system ↔ augmented matrix ↔ vector equation ↔ matrix equation

• Understand the equivalence:

Ax = b is consistent←→ b is in the span of the columns of A

(also: what does this mean geometrically)

• Learn for which A the equation Ax = b is always consistent

• Learn to multiply a vector by a matrix



Multiplying Matrices

matrix × column :

 | | |
x1 x2 · · · xn

| | |


 b1

...
bn

 =

 | | |
b1x1 b2x2 · · · bnxn

| | |


Read this as: b1 times the first column x1 is the first column of the answer, b2
times x2 is the second column of the answer...

Example:  1 2
3 4
5 6

( 7
8

)
=

(
5 · 2 + 6 · 3
7 · 2 + 8 · 3

)
=

(
28
38

)



Multiplying Matrices
Another way to multiply

row vector × column vector :
(

a1 · · · an

) b1
...
bn

 = a1b1+· · ·+anbn

matrix × column vector :

 r1
...
rm

 b =

 r1b
...

rmb



Example:  1 2
3 4
5 6

( 7
8

)
=

 1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8

 =

(
28
38

)



Linear Systems vs Augmented Matrices vs
Matrix Equations vs Vector Equations

A matrix equation is an equation Ax = b where A is a matrix and b is a vector.
So x is a vector of variables.

A is an m× n matrix if it has m rows and n columns.
What sizes must x and b be?

Example: 1 2
3 4
5 6

( x
y

)
=

 9
10
11



(
5 · 2 + 6 · 3
7 · 2 + 8 · 3

)
=

(
28
38

)

Rewrite this equation as a vector equation, a system of linear equations, and an
augmented matrix.

We will go back and forth between these four points of view over
and over again. You need to get comfortable with this.



Solving matrix equations

Solve the matrix equation 0 6 8
1/2 0 0

0 1/2 0

 f
s
t

 =

 20
1
1



What does this mean about rabbits?



Solutions to Linear Systems vs Spans

Say that

A =

 | | |
v1 v2 · · · vn
| | |

 .

Fact. Ax = b has a solution ⇐⇒ b is in the span of columns of A
algebra ⇐⇒ geometry

Why?

Again this is a basic fact we will use over and over and over.



Solutions to Linear Systems vs Spans

Fact. Ax = b has a solution ⇐⇒ b is in the span of columns of A

Examples: 1 0
0 1
0 0

( x1

x2

)
=

 2
3
5

  1 0
0 1
0 0

( x1

x2

)
=

 2
3
0



Again this is a basic fact we will use over and over.



Is a given vector in the span?

Fact. Ax = b has a solution ⇐⇒ b is in the span of columns of A

algebra ⇐⇒ geometry

Is (9, 10, 11) in the span of (1, 3, 5) and (2, 4, 6)?

Which of the following vectors are in the span of

(2, 3, 1, 4, 0), (3, 4,−1, 3, 5), (1,−1, 2, 4, 3)?

• (3, 6,−5,−2,−7)
• (6, 19,−3, 4,−12)



Is a given vector in the span?

Which of the following true statements can you verify without
row reduction?

1. (0, 1, 2) is in the span of (3, 3, 4), (0, 10, 20), (0,−1,−2)
2. (0, 1, 2) is in the span of (3, 3, 4), (0, 1, 0), (0, 0,

√
2)

3. (0, 1, 2) is in the span of (3, 3, 4), (0, 5, 7), (0, 6, 8)

4. (0, 1, 2) is in the span of (5, 7, 0), (6, 8, 0), (3, 3, 4)

Poll



Pivots vs Solutions

Theorem. Let A be an m× n matrix. The following are equivalent.

1. Ax = b has a solution for all b

2. The span of the columns of A is Rm

3. A has a pivot in each row

Why?

More generally, if you have some vectors and you want to know the dimension
of the span, you should row reduce and count the number of pivots.



Properties of the Matrix Product Ax

c = real number, u, v = vectors,

• A(u+ v) = Au+Av

• A(cv) = cAv

Check these!

Application. If u and v are solutions to Ax = 0 then so is every element of
Span{u, v}.

A(cu+ dv) = A(cu+ dv)

= A(cu) +A(dv)

= cAu+ dAv

= c · 0 + d · 0
= 0



Guiding questions

Here are the guiding questions for the rest of the chapter:

1. What are the solutions to Ax = 0?

2. For which b is Ax = b consistent?

These are two separate questions!



Summary of Section 2.3

• Two ways to multiply a matrix times a column vector: r1
...
rm

 b =

 r1b
...

rmb


OR  | | |

x1 x2 · · · xn

| | |


 b1

...
bn

 =

 | |
b1x1 · · · bnxn

| |


• Linear systems, augmented matrices, vector equations, and matrix

equations are all equivalent.

• Fact. Ax = b has a solution ⇔ b is in the span of columns of A

• Theorem. Let A be an m× n matrix. The following are equivalent.
1. Ax = b has a solution for all b
2. The span of the columns of A is Rm

3. A has a pivot in each row



Typical exam questions

• If A is a 3× 5 matrix, and the product Ax makes sense, then which Rn does
x lie in?

• Rewrite the following linear system as a matrix equation and a vector
equation:

x+ y + z = 1

• Multiply:  0 2
0 4
5 0

( 3
2

)

• Which of the following matrix equations are consistent? 1 1
1 0
1 1

( x1

x2

)
=

 2
3
2

  1 1
1 0
1 1

( x1

x2

)
=

 2
3
3


(And can you do it without row reducing?)



Section 2.4

Solution Sets



Outline

• Understand the geometric relationship between the solutions to Ax = b
and Ax = 0

• Understand the relationship between solutions to Ax = b and spans

• Learn the parametric vector form for solutions to Ax = b



Homogeneous systems

Solving Ax = b is easiest when b = 0. Such equations are called homogeneous.

Homogenous systems are always consistent. Why?

x = 0.

When does Ax = 0 have a nonzero/nontrivial solution?

⇔ there is at least 1
free variable

⇔ there is a column
without a pivot

If there are k-free variables and n total variables, then the solution is a
k-dimensional plane through the origin in Rn. In particular it is a span.



Parametric Vector Forms for Solutions
Homogeneous case

Solve the matrix equation Ax = 0 where

A =

 1 2 0 −1
−2 −3 4 5
2 4 0 −2

 
 1 0 −8 −7

0 1 4 3
0 0 0 0


We already know the parametric form:

x1 = 8x3 + 7x4

x2 = −4x3 − 3x4

x3 = x3 (free)

x4 = x4 (free)

We can also write this in parametric vector form:

x3


8
−4
1
0

+ x4


7
−3
0
1


Or we can write the solution as a span: Span{(8,−4, 1, 0), (7,−3, 0, 1)}.



Parametric Vector Forms for Solutions
Homogeneous case

Find the parametric vector form of the solution to Ax = 0 where

A =
(

1 1 1 1
)



Variables, equations, and dimension

For b 6= 0, the solutions to Ax = b are...

1. always a span

2. sometimes a span

3. never a span

Poll



Nonhomogeneous Systems

Suppose Ax = b and b 6= 0.

As before, we can find the parametric vector form for the solution in terms of
free variables.

What is the difference?

Solution will have constant terms.



Parametric Vector Forms for Solutions
Nonhomogeneous case

Find the parametric vector form of the solution to Ax = b where:

(A|b) =

 1 2 0 −1 3
−2 −3 4 5 2
2 4 0 −2 6

 
 1 0 −8 −7 −13

0 1 4 3 8
0 0 0 0 0


We already know the parametric form:

x1 = −13 + 8x3 + 7x4

x2 = 8 − 4x3 − 3x4

x3 = x3 (free)

x4 = x4 (free)

We can also write this in parametric vector form:
−13

8
0
0

+ x3


8
−4
1
0

+ x4


7
−3
0
1


This is a translate of a span: (−13, 8, 0, 0) + Span{(8,−4, 1, 0), (7,−3, 0, 1)}.



Parametric Vector Forms for Solutions
Nonhomogeneous case

Find the parametric vector form for the solution to Ax = (9) where

A =
(

1 1 1 1
)

(
1 1 1 1 9

)



Homogeneous vs. Nonhomogeneous Systems

Key realization. Set of solutions to Ax = b obtained by taking one solution and
adding all possible solutions to Ax = 0.

Ax = 0 solutions Ax = b solutions

xkvk + · · ·+ xnvn  p+ xkvk + · · ·+ xnvn

So: set of solutions to Ax = b is parallel to the set of solutions to Ax = 0. It is
a translate of a plane through the origin. (Again, we are using geometry to
understand algebra!)

So by understanding Ax = 0 we gain understanding of Ax = b for all b. This
gives structure to the set of equations Ax = b for all b.

Demo

Demo

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?x=-3,0&mat=1,-3:2,-6&lock=true&closed=true
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?lock=true&x=0,0,0


Parametric Vector Forms for Solutions
Nonhomogeneous case

Find the parametric vector forms for

(
1 −3
2 −6

)(
x
y

)
=

(
0
0

)

...and

(
1 −3
2 −6

)(
x
y

)
=

(
3
6

)
.



Solving matrix equations

The matrix equation 0 6 8
1/2 0 0

0 1/2 0

 f
s
t

 =

 0
0
0


has only the trivial solution.

What does this mean about the matrix equation 0 6 8
1/2 0 0

0 1/2 0

 f
s
t

 =

 20
1
1

?

What does this mean about rabbits?



Two different things

Suppose A is an m× n matrix. Notice that if Ax = b is a matrix equation then
x is in Rn and b is in Rm. There are two different problems to solve.

1. If we are given a specific b, then we can solve Ax = b. This means we find
all x in Rn so that Ax = b. We do this by row reducing, taking free variables
for the columns without pivots, and writing the (parametric) vector form for
the solution.

2. We can also ask for which b in Rm does Ax = b have a solution? The
answer is: when b is in the span of the columns of A. So the answer is “all b in
Rm” exactly when the span of the columns is Rm which is exactly when A has
m pivots.

If you go back to the Demo from earlier in this section, the first question is
happening on the left and the second question on the right.

Example. Say that A =
(
1 −3
2 −6

)
. We can ask: (1) Does Ax = ( 1

2 ) have a
solution? and (2) For which b does Ax = b have a solution?

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?x=-3,0&mat=1,-3:2,-6&lock=true&closed=true


Summary of Section 2.4

• The solutions to Ax = 0 form a plane through the origin (span)

• The solutions to Ax = b form a plane not through the origin

• The set of solutions to Ax = b is parallel to the one for Ax = 0

• In either case we can write the parametric vector form. The parametric
vector form for the solution to Ax = 0 is obtained from the one for
Ax = b by deleting the constant vector. And conversely the parametric
vector form for Ax = b is obtained from the one for Ax = 0 by adding a
constant vector. This vector translates the solution set.



Typical exam questions

• Suppose that the set of solutions to Ax = b is the plane z = 1 in R3.
What is the set of solutions to Ax = 0?

• Suppose that the set of solutions to Ax = 0 is the line y = x in R2. Is it
possible that there is a b so that the set of solutions to Ax = b is the line
x+ y = 1?

• Suppose that the set of solutions to Ax = b is the plane x+ y = 1 in R3.
Is is possible that there is a b so that the set of solutions to Ax = b is the
z-axis?

• Suppose that the set of solutions to Ax = 0 is the plane x+ 2y − 3z = 0
in R3 and that the vector (1, 3, 5) is a solution to Ax = b. Find one other
solution to Ax = b. Find all of them.

• Is there a 2× 2 matrix so that the set of solutions to Ax = ( 1
2 ) is the line

y = x+ 1? If so, find such an A. If not, explain why not.



Section 2.5

Linear Independence



Section 2.5 Outline

• Understand what is means for a set of vectors to be linearly independent

• Understand how to check if a set of vectors is linearly independent



Linear Independence

The idea of linear independence: a collection of vectors v1, . . . , vk is linearly
independent if they are all pointing in truly different directions. This means
that none of the vi is in the span of the others.

For example, (1, 0, 0), (0, 1, 0) and (0, 0, 1) are linearly independent.

Also, (1, 0, 0), (0, 1, 0) and (1, 1, 0) are linearly dependent.

What is this good for? A basic question we can ask about solving linear
equations is: What is the smallest number of vectors needed in the parametric
solution to a linear system? We need linear independence to answer this
question. See the last slide in this section.



Linear Independence

A set of vectors {v1, . . . , vk} in Rn is linearly independent if the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has only the trivial solution. It is linearly dependent otherwise.

So, linearly dependent means there are x1, x2, . . . , xk not all zero so that

x1v1 + x2v2 + · · ·+ xkvk = 0

This is a linear dependence relation.



Linear Independence

A set of vectors {v1, . . . , vk} in Rn is linearly independent if the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has only the trivial solution.

Fact. The columns of A are linearly independent
⇔ Ax = 0 has only the trivial solution.
⇔ A has a pivot in each column

Why?



Linear Independence

Is


 1

1
1

 ,

 1
−1
2

 ,

 3
1
4

 linearly independent?

Is


 1

1
−2

 ,

 1
−1
2

 ,

 3
1
4

 linearly independent?

AYes...



Linear Independence

When is {v} is linearly dependent?

When is {v1, v2} is linearly dependent?

When is the set {v1, v2, . . . , vk} linearly dependent?

Fact. The set {v1, v2, . . . , vk} is linearly independent if and only if they span a
k-dimensional plane. (algebra ↔ geometry)

Fact. The set {v1, v2, . . . , vk} is linearly dependent if and only if we can
remove a vector from the set without changing (the dimension of) the span.

Fact. The set {v1, v2, . . . , vk} is linearly dependent if and only if some vi lies in
the span of v1, . . . , vi−1.

Demo

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&v3=.5,-.5,1&labels=v,w,x&range=5


Span and Linear Independence

Is


 5

7
0

 ,

 −5
7
0

 ,

 3
1
4

 linearly independent?

Try using the last fact: the set {v1, v2, . . . , vk} is linearly dependent if and only
if some vi lies in the span of v1, . . . , vi−1.



Linear independence and free variables

Theorem. Let v1, . . . , vk be vectors in Rn and consider the vector equation

x1v1 + · · ·+ xkvk = 0.

The set of vectors corresponding to non-free variables are linearly independent.

So, given a bunch of vectors v1, . . . , vk, if you want to find a collection of vi
that are linearly independent, you put them in the columns of a matrix, row
reduce, find the pivots, and then take the original vi corresponding to those
columns.

Example. Try this with (1, 1, 1), (2, 2, 2), and (1, 2, 3).



Linear independence and coordinates

Fact. If v1, . . . , vk are linearly independent vectors then we can write each
element of

Span{v1, . . . , vk}

in exactly one way as a linear combination of v1, . . . , vk.



Span and Linear Independence
Two More Facts

Fact 1. Say v1, . . . , vk are in Rn. If k > n, then {v1, . . . , vk} is linearly
dependent.

Fact 2. If one of v1, . . . , vk is 0, then {v1, . . . , vk} is linearly dependent.



Parametric vector form and linear independence

Say you find the parametric vector form for a homoge-
neous system of linear equations, and you find that the
set of solutions is the span of certain vectors. Then those
vectors are...

1. always linearly independent

2. sometimes linearly independent

3. never linearly independent

Poll

Example. In Section 2.4 we solved the matrix equation Ax = 0 where

A =

 1 2 0 −1
−2 −3 4 5
2 4 0 −2

 
 1 0 −8 −7

0 1 4 3
0 0 0 0


In parametric vector form, the solution is:

x3


8
−4
1
0

+ x4


7
−3
0
1





Parametric Vector Forms and Linear Independence

In Section 2.4 we solved the matrix equation Ax = 0 where

A =

 1 2 0 −1
−2 −3 4 5
2 4 0 −2

 
 1 0 −8 −7

0 1 4 3
0 0 0 0


In parametric vector form, the solution is:

x3


8
−4
1
0

+ x4


7
−3
0
1


The two vectors that appear are linearly independent (why?). This means that
we can’t write the solution with fewer than two vectors (why?). This also
means that this way of writing the solution set is efficient: for each solution,
there is only one choice of x3 and x4 that gives that solution.



Summary of Section 2.5

• A set of vectors {v1, . . . , vk} in Rn is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has only the trivial solution. It is linearly dependent otherwise.

• The cols of A are linearly independent
⇔ Ax = 0 has only the trivial solution.
⇔ A has a pivot in each column

• The number of pivots of A equals the dimension of the span of the
columns of A

• The set {v1, . . . , vk} is linearly independent ⇔ they span a k-dimensional
plane

• The set {v1, . . . , vk} is linearly dependent ⇔ some vi lies in the span of
v1, . . . , vi−1.

• To find a collection of linearly independent vectors among the
{v1, . . . , vk}, row reduce and take the (original) vi corresponding to pivots.



Typical exam questions

• State the definition of linear independence.

• Always/sometimes/never. A collection of 99 vectors in R100 is linearly
dependent.

• Always/sometimes/never. A collection of 100 vectors in R99 is linearly
dependent.

• Find all values of h so that the following vectors are linearly independent:
 5

7
1

 ,

 −5
7
0

 ,

 10
0
h


• True/false. If A has a pivot in each column, then the rows of A are

linearly independent.

• True/false. If u and v are vectors in R5 then {u, v,
√
2u− πv} is linearly

independent.

• If you have a set of linearly independent vectors, and their span is a line,
how many vectors are in the set?



Section 2.6

Subspaces



Outline of Section 2.6

• Definition of subspace

• Examples and non-examples of subspaces

• Spoiler alert: Subspaces are the same as spans

• Spanning sets for subspaces

• Two important subspaces for a matrix: Col(A) and Nul(A)



Subspaces

A subspace of Rn is a subset V of Rn with:

1. The zero vector is in V .

2. If u and v are in V , then u+ v is also in V .

3. If u is in V and c is a scalar, then cu is in V .

The second and third properties are called “closure under addition” and
“closure under scalar multiplication.”

Together, the second and third properties could together be rephrased as:
closure under linear combinations.

• a line through 0

• a plane through 0

• any span

• NOT: a line or plane that does not contain 0



Which are subspaces?

1. the unit circle in R2

2. the point (1, 2, 3) in R3

3. the xy-plane in R3

4. the xy-plane together with the z-axis in R3



Which are subspaces?

Is the first quadrant of R2 a subspace?

1. yes

2. no

Poll



Which are subspaces?

1.

{(
a
b

)
in R2 | a+ b = 0

}

2.

{(
a
b

)
in R2 | a+ b = 1

}

3.

{(
a
b

)
in R2 | ab 6= 0

}

4.

{(
a
b

)
in R2 | a, b rational

}



Spans and subspaces

Fact. Any Span{v1, . . . , vk} is a subspace.

Why?

Fact. Every subspace V is a span.

Why?

V = Span V

So now we know that three things are the same:

• subspaces

• spans

• planes through 0

So why bother with the word “subspace”? Sometimes easier to check a subset
is a subspace than to check it is a span (see null spaces, eigenspaces). Also, it
makes sense (and is often useful) to think of a subspace without a particular
spanning set in mind. Try thinking of other examples where it is useful to have
two names for the same thing, like: water / H2O or free throw / foul shot.



Column Space and Null Space

A = m× n matrix.

Col(A) = column space of A = span of the columns of A

Nul(A) = null space of A = (set of solutions to Ax = 0)

Example. A =

 1 1
1 1
1 1



Col(A) = subspace of Rm

Nul(A) = subspace of Rn

We have already been interested in both. We have been computing null spaces
all semester. Also, we have seen that Ax = b is consistent exactly when b is in
the span of the columns of A, or, b is in Col(A).



Spanning sets for Nul(A) and Col(A)

Find spanning sets for Nul(A) and Col(A)

A =

 1 1 1
1 1 1
1 1 1



ANul(A) is the span of solutions to Ax = 0, which for this matrix we can
show is given by

y

 −11
0

+ z

 −10
1



So the basis for nullspace of A is {

 −11
0

 ,

 −10
1

}.



Spanning sets for Nul(A) and Col(A)

In general:

• our usual parametric solution for Ax = 0 gives a spanning set for Nul(A)

• the pivot columns of A form a spanning set for Col(A)

Warning! Not the pivot columns of the reduced matrix.

Notice that the columns of A form a (possibly larger) spanning set. We’ll see
later that the above recipe is the smallest spanning set.



Spanning sets

Find a spanning set for the plane 2x+ 3y + z = 0 in R3.



Subspaces and Null spaces

Fact. Every subspace is a null space.

Why? Given a spanning set, you can reverse engineer the A...

It’s actually a little tricky to do this. Given the spanning set, you make those
vectors the rows of a matrix, then row reduce and find vector parametric form,
and then make those vectors the rows of a new matrix. Why does this work?
Try an example!

Example. Find a matrix A whose null space is the span of (1, 1, 1) and (1, 2, 3).
You should get the matrix A = (1 − 2 1).

So now we know that four things are the same:

• subspaces

• spans

• planes through 0

• solutions to Ax = 0

(Make sure you understand what we mean when we say these are all the same!)



So why learn about subspaces?

If subspaces are the same as spans, planes through the origin, and solutions to
Ax = 0, why bother with this new vocabulary word?

The point is that we have been throwing around terms like “3-dimensional
plane in R4” all semester, but we never said what “dimension” and “plane”
are. Subspaces give the proper way to define a plane. Soon we will learn the
meaning of a dimension of a subspace.



All the ways

Here are all the ways we know to describe a subspace:

1. As span:

Span


 −11

0

 ,

 −10
1


2. As a column space:

Col

 −1 −1
1 0
0 1


3. As a null space:

Nul
(

1 1 1
)

4. As the set of solutions to a homogeneous linear system:

x+ y + z = 0

5. Same, but in set builder notation:
 a

b
c

 : a+ b+ c = 0





Section 2.6 Summary

• A subspace of Rn is a subset V with:
1. The zero vector is in V .
2. If u and v are in V , then u+ v is also in V .
3. If u is in V and c is in R, then cu ∈ V .

• Two important subspaces: Nul(A) and Col(A)

• Find a spanning set for Nul(A) by solving Ax = 0 in vector parametric
form

• Find a spanning set for Col(A) by taking pivot columns of A (not reduced
A)

• Four things are the same: subspaces, spans, planes through 0, null spaces



Typical exam questions

• Consider the set {(x, y) ∈ R2 | xy ≥ 0}. Is it a subspace? If not, which
properties does it fail?

• Consider the x-axis in R3. Is it a subspace? If not, which properties does
it fail?

• Consider the set {(x, y, z, w) ∈ R4 | x+ y − z + w = 0}. Is it a subspace?
If not, which properties does it fail?

• Find spanning sets for the column space and the null space of

A =

 1 2 3
4 5 6
7 8 9


• True/False: The set of solutions to a matrix equation is always a subspace.

• True/False: The zero vector is a subspace.



Section 2.7

Bases



Bases

V = subspace of Rn

A basis for V is a set of vectors {v1, v2, . . . , vk} such that

1. V = Span{v1, . . . , vk}
2. v1, . . . , vk are linearly independent

Equivalently, a basis is a minimal spanning set, that is, a spanning set where if
you remove any one of the vectors you no longer have a spanning set.

Q. What is one basis for R2? Rn? How many bases are there?



Dimension

V = subspace of Rn

dim(V ) = dimension of V = k =the number of vectors in the basis

(What is the problem with this definition of dimension?)



Basis example

Find a basis for the xy-plane in R3? Find all bases for the xy-plane in R3.
(Remember: a basis is a set of vectors in the subspace that span the subspace
and are linearly independent.)



Bases for Rn

Let us consider the special case where V is equal to all of Rn.

What are all bases for V = Rn? Or, if we have a set of vectors {v1, . . . , vk},
how do we check if they form a basis for Rn? First, we make them the columns
of a matrix....

• For the vectors to be linearly independent we need a pivot in every column.

• For the vectors to span Rn we need a pivot in every row.

Conclusion: k = n and the matrix has n pivots.



The standard basis for Rn

We have the standard basis vectors for Rn:

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...



Who cares about bases?

A basis {v1, . . . , vk} for a subspace V of Rn is useful because:

Every vector v in V can be written in exactly one way:

v = c1v1 + · · ·+ ckvk

So a basis gives coordinates for V , like latitude and longitude. See Section 2.8.



Bases for Nul(A) and Col(A)

Find bases for Nul(A) and Col(A)

A =

 1 1 1
1 1 1
1 1 1





Bases for Nul(A) and Col(A)

Find bases for Nul(A) and Col(A)

A =

 1 1 1
1 1 1
1 1 1





Bases for Nul(A) and Col(A)

Find bases for Nul(A) and Col(A)

A =

 1 2 3
4 5 6
7 8 9

 
 1 0 −1

0 1 2
0 0 0





Bases for Nul(A) and Col(A)

In general:

• our usual parametric solution for Ax = 0 gives a basis for Nul(A)

• the pivot columns of A form a basis for Col(A)

Warning! Not the pivot columns of the reduced matrix.

Fact. If A = n× n matrix, then:

A is invertible ⇔ Col(A) = Rn

What should you do if you are asked to find a basis for Span{v1, . . . , vk}?



Bases for planes

Find a basis for the plane 2x+ 3y + z = 0 in R3.



Basis theorem

Basis Theorem
If V is a k-dimensional subspace of Rn, then

• any k linearly independent vectors of V form a basis for V

• any k vectors that span V form a basis for V

In other words if a set has two of these three properties, it is a basis:

spans V , linearly independent, k vectors

We are skipping Section 2.8 this semester. But remember: the whole point of a
basis is that it gives coordinates (like latitude and longitude) for a subspace.
Every point has a unique address.



Section 2.7 Summary

• A basis for a subspace V is a set of vectors {v1, v2, . . . , vk} such that
1. V = Span{v1, . . . , vk}
2. v1, . . . , vk are linearly independent

• The number of vectors in a basis for a subspace is the dimension.

• Find a basis for Nul(A) by solving Ax = 0 in vector parametric form

• Find a basis for Col(A) by taking pivot columns of A (not reduced A)

• Basis Theorem. Suppose V is a k-dimensional subspace of Rn. Then
I Any k linearly independent vectors in V form a basis for V .
I Any k vectors in V that span V form a basis.



Typical exam questions

• Find a basis for the yz-plane in R3

• Find a basis for R3 where no vector has a zero

• How many vectors are there in a basis for a line in R7?

• True/false: every basis for a plane in R3 has exactly two vectors.

• True/false: if two vectors lie in a plane through the origin in R3 and they
are not collinear then they form a basis for the plane.

• True/false: The dimension of the null space of A is the number of pivots
of A.

• True/false: If b lies in the column space of A, and the columns of A are
linearly independent, then Ax = b has infinitely many solutions.

• True/false: Any three vectors that span R3 must be linearly independent.



Section 2.9

The rank theorem



Rank Theorem

On the left are solutions to Ax = 0, on the right is Col(A):



Rank Theorem

rank(A) = dimCol(A) = # pivot columns

nullity(A) = dimNul(A) = # nonpivot columns

Rank Theorem. rank(A) + nullity(A) = #cols(A)

This ties together everything in the whole chapter: rank A describes the b’s so
that Ax = b is consistent and the nullity describes the solutions to Ax = 0. So
more flexibility with b means less flexibility with x, and vice versa.

Example. A =

 1 1 1
1 1 1
1 1 1





About names

Again, why did we need all these vocabulary words? One answer is that the
rank theorem would be harder to understand if it was:

The size of a minimal spanning set for the set of solutions to Ax = 0 plus the
size of a minimal spanning set for the set of b so that Ax = b has a solution is
equal to the number of columns of A.

Compare to: rank(A) + nullity(A) = n

“A common concept in history is that knowing the name of something or
someone gives one power over that thing or person.” –Loren Graham
http://philoctetes.org/news/the_power_of_names_religion_mathematics

http://philoctetes.org/news/the_power_of_names_religion_mathematics


Section 2.9 Summary

• Rank Theorem. rank(A) + dimNul(A) = #cols(A)



Typical exam questions

• Suppose that A is a 5× 7 matrix, and that the column space of A is a line
in R5. Describe the set of solutions to Ax = 0.

• Suppose that A is a 5× 7 matrix, and that the column space of A is R5.
Describe the set of solutions to Ax = 0.

• Suppose that A is a 5× 7 matrix, and that the null space is a plane. Is
Ax = b consistent, where b = (1, 2, 3, 4, 5)?

• True/false. There is a 3× 2 matrix so that the column space and the null
space are both lines.

• True/false. There is a 2× 3 matrix so that the column space and the null
space are both lines.

• True/false. Suppose that A is a 6× 2 matrix and that the column space
of A is 2-dimensional. Is it possible for (1, 0) and (1, 1) to be solutions to
Ax = b for some b in R6?



Chapter 3

Linear Transformations and Matrix Algebra



Where are we?

In Chapter 1 we learned to solve all linear systems algebraically.

In Chapter 2 we learned to think about the solutions geometrically.

In Chapter 3 we continue with the algebraic abstraction. We learn to think
about solving linear systems in terms of inputs and outputs. This is similar to
control systems in AE, objects in computer programming, or hot pockets in a
microwave.

More specifically, we think of a matrix as giving rise to a function with inputs
and outputs. Solving a linear system means finding an input that produces a
desired output. We will see that sometimes these functions are invertible,
which means that you can reverse the function, inputting the outputs and
outputting the inputs.

The invertible matrix theorem is the highlight of the chapter; it tells us when
we can reverse the function. As we will see, it ties together everything in the
course.



Sections 3.1

Matrix Transformations



Section 3.1 Outline

• Learn to think of matrices as functions, called matrix transformations

• Learn the associated terminology: domain, codomain, range

• Understand what certain matrices do to Rn



From matrices to functions

Let A be an m× n matrix.

We define a function

T : Rn → Rm

T (v) = Av

This is called a matrix transformation.

The domain of T is Rn.

The co-domain of T is Rm.

The range of T is the set of outputs: Col(A)

This gives us another point of view of Ax = b

: linear system, matrix equation,
vector equation, linear transformation equation

Demo

https://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=false&vers=d2646d


Example

Let A =

 1 1
0 1
1 1

, u =

(
3
4

)
, b =

 7
5
7

.

What is T (u)?

Find v in R2 so that T (v) = b

Find a vector in R3 that is not in the range of T .



Square matrices

For a square matrix we can think of the associated matrix transformation

T : Rn → Rn

as doing something to Rn.

Example. The matrix transformation T for(
−1 0
0 1

)
What does T do to R2?



Square matrices

What does each matrix do to R2?

(
0 1
1 0

)

(
1 0
0 0

)

(
3 0
0 3

)

What is the range in each case?



Poll

What does

(
1 1
0 1

)
do to this letter F?

Poll



Square matrices

What does each matrix do to R2?

Hint: if you can’t see it all at once, see what happens to the x- and y-axes.

(
1 1
0 1

)

(
1 −1
1 1

)

(
cos θ − sin θ
sin θ cos θ

)



Examples in R3

What does each matrix do to R3?

 1 0 0
0 1 0
0 0 0



 1 0 0
0 −1 0
0 0 1



 0 −1 0
1 0 0
0 0 1





Why are we learning about matrix transformations?

Sample applications:

• Cryptography (Hill cypher)

• Computer graphics (Perspective projection is a linear map!)

• Aerospace (Control systems - input/output)

• Biology

• Many more!



Applications of Linear Algebra

Biology: In a population of rabbits...

• half of the new born rabbits survive their first year

• of those, half survive their second year

• the maximum life span is three years

• rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population in 2016 (in terms of the number of first, second, and
third year rabbits), then what is the population in 2017?

These relations can be represented using a matrix. 0 6 8
1
2

0 0
0 1

2
0


How does this relate to matrix transformations?

Demo

http://textbooks.math.gatech.edu/ila/demos/rabbits/book_demo.html


Section 3.1 Summary

• If A is an m× n matrix, then the associated matrix transformation T is
given by T (v) = Av. This is a function with domain Rn and codomain
Rm and range Col(A).

• If A is n× n then T does something to Rn; basic examples: reflection,
projection, scaling, shear, rotation



Typical exam questions

• What does the matrix
(−1 0

0 −1

)
do to R2?

• What does the matrix
(

1/
√

2 1/
√
2

−1/
√

2 1/
√
2

)
do to R2?

• What does the matrix
(

1 0 0
0 0 0
0 0 0

)
do to R3?

• What does the matrix
(

0 0
1 0
0 1

)
do to R2?

• True/false. If A is a matrix and T is the associated matrix transformation,
then the statement Ax = b is consistent is equivalent to the statement
that b is in the range of T .

• True/false. There is a matrix A so that the domain of the associated
matrix transformation is a line in R3.



Section 3.2

One-to-one and onto transformations



Section 3.2 Outline

• Learn the definitions of one-to-one and onto functions

• Determine if a given matrix transformation is one-to-one and/or onto



One-to-one and onto in calculus

What do one-to-one and onto mean for a function f : R→ R?



One-to-one

A matrix transformation T : Rn → Rm is one-to-one if each b in Rm is the
output for at most one v in Rn.

In other words: different inputs have different outputs.

Do not confuse this with the definition of a function, which says that for each
input x in Rn there is at most one output b in Rm.



One-to-one

T : Rn → Rm is one-to-one if each b in Rm is the output for at most one v in
Rn.

Theorem. Suppose T : Rn → Rm is a matrix transformation with matrix A.
Then the following are all equivalent:

• T is one-to-one

• the columns of A are linearly independent

• Ax = 0 has only the trivial solution

• A has a pivot in each column

• the range of T has dimension n

What can we say about the relative sizes of m and n if T is one-to-one?

Draw a picture of the range of a one-to-one matrix transformation R→ R3.



Onto

A matrix transformation T : Rn → Rm is onto if the range of T equals the
codomain Rm, that is, each b in Rm is the output for at least one input v in
Rm.



Onto

T : Rn → Rm is onto if the range of T equals the codomain Rm, that is, each
b in Rm is the output for at least one input v in Rm.

Theorem. Suppose T : Rn → Rm is a matrix transformation with matrix A.
Then the following are all equivalent:

• T is onto

• the columns of A span Rm

• A has a pivot in each row

• Ax = b is consistent for all b in Rm

• the range of T has dimension m

What can we say about the relative sizes of m and n if T is onto?

Give an example of an onto matrix transformation R3 → R.



One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto? 1 0 7
0 1 2
0 0 9

  1 0
1 1
2 1

 (
1 0 0
0 1 0

) (
2 1
1 1

)



One-to-one and Onto

Which of the previously-studied matrix transformations of R2 are one-to-one?
Onto?

(
0 1
1 0

)
reflection

(
1 0
0 0

)
projection

(
3 0
0 3

)
scaling

(
1 1
0 1

)
shear

(
cos θ − sin θ
sin θ cos θ

)
rotation



Which are one to one / onto?

Which give one to one-to-one / onto matrix transforma-
tions?

(
1 1 0
0 1 1

)  1 0
0 1
1 0

 (
1 −1 2
−2 2 −4

)

Poll

Demo

Demo

Demo

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,1,0:0,1,1&range2=5&closed=true&show=true&lock=true&x=0,0,0
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=true
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?closed=true


Robot arm

Consider the robot arm example from the book.

There is a natural function f here (not a matrix transformation). The input is a
set of three angles and the co-domain is R2. Is this function one-to-one? Onto?



The geometry

Say that T : Rn → Rm is a linear transformation.

The geometry of one-to-one:

The range has dimension n (and the null space is a point).

The geometry of onto:

The range has dimension m, so it is all of Rm (and the null space has
dimension n−m).



Summary of Section 3.2

• T : Rn → Rm is one-to-one if each b in Rm is the output for at most one
v in Rn.

• Theorem. Suppose T : Rn → Rm is a matrix transformation with matrix
A. Then the following are all equivalent:
I T is one-to-one
I the columns of A are linearly independent
I Ax = 0 has only the trivial solution
I A has a pivot in each column
I the range has dimension n

• T : Rn → Rm is onto if the range of T equals the codomain Rm, that is,
each b in Rm is the output for at least one input v in Rm.

• Theorem. Suppose T : Rn → Rm is a matrix transformation with matrix
A. Then the following are all equivalent:
I T is onto
I the columns of A span Rm

I A has a pivot in each row
I Ax = b is consistent for all b in Rm.
I the range of T has dimension m



Typical exam questions

• True/False. It is possible for the matrix transformation for a 5× 6 matrix
to be both one-to-one and onto.

• True/False. The matrix transformation T : R3 → R3 given by projection
to the yz-plane is onto.

• True/False. The matrix transformation T : R2 → R2 given by rotation by
π is onto.

• Is there an onto matrix transformation R2 → R3? If so, write one down, if
not explain why not.

• Is there an one-to-one matrix transformation R2 → R3? If so, write one
down, if not explain why not.





Section 3.3

Linear Transformations



Section 3.3 Outline

• Understand the definition of a linear transformation

• Linear transformations are the same as matrix transformations

• Find the matrix for a linear transformation



Linear transformations

A function T : Rn → Rm is a linear transformation if

• T (u+ v) = T (u) + T (v) for all u, v in Rn.

• T (cv) = cT (v) for all v in Rn and c in R.

First examples: matrix transformations.



Linear transformations

A function T : Rn → Rm is a linear transformation if

• T (u+ v) = T (u) + T (v) for all u, v in Rn.

• T (cv) = cT (v) for all v in Rn and c in R.

Notice that T (0) = 0. Why?

We have the standard basis vectors for Rn:

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

If we know T (e1), . . . , T (en), then we know every T (v). Why?

In engineering, this is called the principle of superposition.



Which are linear transformations?
And why?

T

(
x
y

)
=

 x+ y
y

x− y



T

(
x
y

)
=

 x+ y + 1
y

x− y



T

(
x
y

)
=

 xy
y

x− y



A function Rn → Rm is linear exactly when the coordinates are linear (linear
combinations of the variables, no constant terms).



Linear transformations

Which properties of a linear transformation fail for this function T : R2 → R2?

T

(
x
y

)
=

(
x
|y|

)



Linear transformations are matrix transformations

Theorem. Every linear transformation is a matrix transformation.

This means that for any linear transformation T : Rn → Rm there is an m× n
matrix A so that

T (v) = Av

for all v in Rn.

The matrix for a linear transformation is called the standard matrix.



Linear transformations are matrix transformations

Theorem. Every linear transformation is a matrix transformation.

Given a linear transformation T : Rn → Rm the standard matrix is:

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |



Why? Notice that Aei = T (ei) for all i. Then it follows from linearity that
T (v) = Av for all v.



The identity

The identity linear transformation T : Rn → Rn is

T (v) = v

What is the standard matrix?

This standard matrix is called In or I.



Linear transformations are matrix transformations

Suppose T : R2 → R3 is the function given by:

T

(
x
y

)
=

 x+ y
y

x− y


What is the standard matrix for T?



Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of R2 that stretches by 2
in the x-direction and 3 in the y-direction, and then reflects over the line y = x.



Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of R2 that projects onto
the y-axis and then rotates counterclockwise by π/2.



Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of R3 that reflects
through the xy-plane and then projects onto the yz-plane.



Discussion

Find a matrix that does this.

Discussion Question



Summary of Section 3.3

• A function T : Rn → Rm is linear if
I T (u+ v) = T (u) + T (v) for all u, v in Rn.
I T (cv) = cT (v) for all v ∈ Rn and c in R.

• Theorem. Every linear transformation is a matrix transformation (and
vice versa).

• The standard matrix for a linear transformation has its ith column equal
to T (ei).



Typical Exam Questions Section 3.3

• Is the function T : R→ R given by T (x) = x+ 1 a linear transformation?

• Suppose that T : R2 → R3 is a linear transformation and that

T

(
1
1

)
=

 3
3
1

 and T

(
2
1

)
=

 3
1
1


What is

T

(
1
0

)
?

• Find the matrix for the linear transformation T : R3 → R3 that rotates
about the z-axis by π and then scales by 2.

• Suppose T : R3 → R3 is the function given by:

T

 x
y
z

 =

 z
0
x


Is this a linear transformation? If so, what is the standard matrix for T?

• Is the identity transformation one-to-one?



Chapter 4

Determinants



Where are we?

• We have studied the problem Ax = b

• We next want to study Ax = λx

• At the end of the course we want to almost solve Ax = b

We need determinants for the second item.



Section 4.1

The definition of the determinant



Outline of Sections 4.1 and 4.3

• Volume and invertibility

• A definition of determinant in terms of row operations

• Using the definition of determinant to compute the determinant

• Determinants of products: det(AB)

• Determinants and linear transformations and volumes



Invertibility and volume

When is a 2× 2 matrix invertible? ← Algebra

When the rows (or columns) don’t lie on a line ⇔ the corresponding
parallelogram has non-zero area. ← Geometry

When is a 3× 3 matrix invertible?

When the rows (or columns) don’t lie on a plane ⇔ the corresponding
parallelepiped (3D parallelogram) has non-zero volume

Same for n× n!



The definition of determinant

The determinant of a square matrix is a number so that

1. If we do a row replacement on a matrix, the determinant is unchanged

2. If we swap two rows of a matrix, the determinant scales by −1
3. If we scale a row of a matrix by k, the determinant scales by k

4. det(In) = 1

Why would we think of this? Answer: This is exactly how volume works.

Try it out for 2× 2 matrices.



The definition of determinant

The determinant of a square matrix is a number so that

1. If we do a row replacement on a matrix, the determinant is unchanged

2. If we swap two rows of a matrix, the determinant scales by −1
3. If we scale a row of a matrix by k, the determinant scales by k

4. det(In) = 1

Problem. Just using these rules, compute the determinants: 1 0 8
0 1 0
0 0 1

  0 0 1
0 1 0
1 0 0

  1 0 0
0 17 0
0 0 1

  1 2 3
0 4 5
0 0 6





A basic fact about determinants

Fact. If A has a zero row, then det(A) = 0.

Fact. If A is a diagonal matrix then det(A) is the product of the diagonal
entries.

Fact. If A is in row echelon form then det(A) is the product of the diagonal
entries.

Why do these follow from the definition?



A first formula for the determinant

Fact. Suppose we row reduce A. Then

detA = (−1)#row swaps used

(
product of diagonal entries of row reduced matrix

product of scalings used

)

Use the fact to get a formula for the determinant of any 2× 2 matrix.

Consequence of the above fact:

Fact. detA 6= 0⇔ A invertible



Computing determinants
...using the definition in terms of row operations

det

 0 1 0
1 0 1
5 7 −4

 =



Computing determinants
...using the definition in terms of row operations

det

 0 6 8
1/2 0 0

0 1/2 0

 =



A Mathematical Conundrum

We have this definition of a determinant, and it gives us a way to compute it.

But: we don’t know that such a determinant function exists.

More specifically, we haven’t ruled out the possibility that two different row
reductions might gives us two different answers for the determinant.

Don’t worry! It is all okay.

We already gave the key idea: that determinant is just the volume of the
corresponding parallelepiped. You can read the proof in the book if you want.

Fact 1. There is such a number det and it is unique.



Properties of the determinant

Fact 1. There is such a number det and it is unique.

Fact 2. A is invertible ⇔ det(A) 6= 0 important!

Fact 3. detA = (−1)#row swaps used
(

product of diagonal entries of row reduced matrix
product of scalings used

)
Fact 4. The function can be computed by any of the 2n cofactor expansions.

Fact 5. det(AB) = det(A) det(B) important!

Fact 6. det(AT ) = det(A) ok, now we need to say what transpose is

Fact 7. det(A) is signed volume of the parallelepiped spanned by cols of A.

If you want the proofs, see the book. Actually Fact 1 is the hardest!



Powers

Fact 5. det(AB) = det(A) det(B)

Use this fact to compute

det

 0 1 0
1 0 1
5 7 −4

5

What is det(A−1)?



Powers

Suppose we know A5 is invertible. Is A invertible?

1. yes

2. no

3. maybe

Poll



Section 4.3

The determinant and volumes



Areas of triangles

What is the area of the triangle in R2 with vertices (1, 2), (4, 3), and (2, 5)?

What is the area of the parallelogram in R2 with vertices (1, 2), (4, 3), (2, 5),
and (5, 6)?



Determinants and linear transformations

Say A is an n× n matrix and T (v) = Av.

Fact 8. If S is some subset of Rn, then vol(T (S)) = | det(A)| · vol(S).

This works even if S is curvy, like a circle or an ellipse, or:

Why? First check it for little squares/cubes (Fact 7). Then: Calculus!



Summary of Sections 4.1 and 4.3

Say det is a function det : {matrices} → R with:

1. det(In) = 1

2. If we do a row replacement on a matrix, the determinant is unchanged

3. If we swap two rows of a matrix, the determinant scales by −1
4. If we scale a row of a matrix by k, the determinant scales by k

Fact 1. There is such a function det and it is unique.

Fact 2. A is invertible ⇔ det(A) 6= 0 important!

Fact 3. detA = (−1)#row swaps used
(

product of diagonal entries of row reduced matrix
product of scalings used

)
Fact 4. The function can be computed by any of the 2n cofactor expansions.

Fact 5. det(AB) = det(A) det(B) important!

Fact 6. det(AT ) = det(A)

Fact 7. det(A) is signed volume of the parallelepiped spanned by cols of A.

Fact 8. If S is some subset of Rn, then vol(T (S)) = |det(A)| · vol(S).



Typical Exam Questions 4.1 and 4.3

• Find the value of h that makes the determinant 0: 1 2 3
1 0 1
2 2 h


• If the matrix on the left has determinant 5, what is the determinant of the

matrix on the right? a b c
d e f
g h i

  g h i
d e f

a− d b− e c− f


• If the area of a fish (in a photo) is 7 square inches, and we apply a shear,

what is the new area?

• Suppose that T is a linear transformation with the property that
T ◦ T = T . What is the determinant of the standard matrix for T?

• Suppose that T is a linear transformation with the property that
T ◦ T = identity. What is the determinant of the standard matrix for T?

• Find the volume of the triangular pyramid with vertices (0, 0, 0), (0, 0, 1),
(1, 0, 0), and (1, 2, 3).



Section 4.2

Cofactor expansions



Outline of Section 4.2

• We will give a recursive formula for the determinant of a square matrix.



A formula for the determinant

We will give a recursive formula.

First some terminology:

Aij = ijth minor of A

Aij

= (n− 1)× (n− 1) matrix obtained by deleting the ith row and jth column

Cij = (−1)i+j det(Aij)
= ijth cofactor of A

Finally:

det(A) = a11C11 + a12C12 + · · ·+ a1nC1n

Or:

det(A) = a11(det(A11))− a12(det(A12)) + · · · ± a1n(det(A1n))

So we find the determinant of a 3× 3 matrix in terms of the determinants of
2× 2 matrices, etc.



Determinants

Consider

A =

 5 1 0
−1 3 2
4 0 −1


Compute the following:

a11 = a12 = a13 =

A11 = A12 = A13 =

detA11 = detA12 = detA13 =

C11 = C12 = C13 =

detA = a11C11 + a12C12 + a13C13



A formula for the determinant

We can take the recursive formula further....

det(A) = a11(det(A11))− a12(det(A12)) + · · · ± a1n(det(A1n))

Say that....

1× 1 matrices
det(a11) = a11

Now apply the formula to...

2× 2 matrices

det

(
a11 a12

a21 a22

)
=

a11C11 + a12C12

= a11 det(A11) + a12(− det(A12))

= a11(a22) + a12(−a21)

(Could also go really nuts and define the determinant of a 0× 0 matrix to be 1
and use the formula to get the formula for 1× 1 matrices...)



A formula for the determinant

3× 3 matrices

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 = · · ·

You can write this out. And it is a good exercise. But you won’t want to
memorize it.



A formula for the determinant

Another formula for 3× 3 matrices

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32

(Check this is gives the same answer as before. It is a small miracle!)

Use this formula to compute

det

 5 1 0
−1 3 2
4 0 −1





Expanding across other rows and columns

The formula we gave for det(A) is the expansion across the first row. It turns
out you can compute the determinant by expanding across any row or column:

det(A) = ai1Ci1 + · · ·+ ainCin for any fixed i

det(A) = a1jC1j + · · ·+ anjCnj for any fixed j

Or for odd rows and columns:

det(A) = ai1(det(Ai1))− ai2(det(Ai2)) + · · · ± ain(det(Ain))

det(A) = a1j(det(A1j))− a2j(det(A2j)) + · · · ± anj(det(Anj))

and for even rows and columns:

det(A) = −ai1(det(Ai1)) + ai2(det(Ai2)) + · · · ∓ ain(det(Ain))

det(A) = −a1j(det(A1j)) + a2j(det(A2j)) + · · · ∓ anj(det(Anj))

Compute:

det

 2 1 0
1 1 0
5 9 1





Determinants of triangular matrices

If A is upper (or lower) triangular, det(A) is easy to compute with cofactor
expansions (it was also easy using the definition of the determinant):

det


2 1 5 −2
0 1 2 −3
0 0 5 9
0 0 0 10





Determinants

What is the determinant?

det


4 7 0 9 3
1 0 0 0 0
0 0 0 0 3
5 9 2 10 2
0 0 0 2 0



Poll



A formula for the inverse
(from Section 3.3)

2× 2 matrices

A =

(
a b
c d

)
 A−1 =

1

ad− bc

(
d −b

−c a

)

n× n matrices

A−1 =
1

det(A)

 C11 · · · Cn1

...
. . .

...
C1n . . . Cnn


=

1

det(A)
(Cij)

T

Check that these agree!

The proof uses Cramer’s rule (see the notes on the course home page. We’re
not testing on this - it’s just for your information.)



Summary of Section 4.2

• There is a recursive formula for the determinant of a square matrix:

det(A) = a11(det(A11))− a12(det(A12)) + · · · ± a1n(det(A1n))

• We can use the same formula along any row/column.

• There are special formulas for the 2× 2 and 3× 3 cases.



Typical Exam Questions 4.2

• True or false. The cofactor expansion across the first row gives the
negative of the cofactor expansion across the second row.

• Find the determinant of the following matrix using one of the formulas
from this section:  1 0 −2

3 1 −2
−5 0 9


• Find the determinant of the following matrix using one of the formulas

from this section:  1 0 −2
3 1 −2

−5 −1 9


• Find the cofactor matrix for the above matrix and use it to find the inverse.



Chapter 5

Eigenvectors and eigenvalues



Where are we?

Remember:

Almost every engineering problem, no
matter how huge, can be reduced to lin-
ear algebra:

Ax = b or

Ax = λx

A few examples of the second: column buckling, control theory, image
compression, exploring for oil, materials, natural frequency (bridges and car
stereos), fluid mixing, RLC circuits, clustering (data analysis), principal
component analysis, Google, Netflix (collaborative prediction), infectious
disease models, special relativity, and many more!

We have said most of what we are going to say about the first problem. We
now begin in earnest on the second problem.



A Question from Biology

In a population of rabbits...

• half of the new born rabbits survive their first year

• of those, half survive their second year

• the maximum life span is three years

• rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population one year - think of it as a vector (f, s, t) - what is the
population the next year?

 0 6 8
1
2

0 0
0 1

2
0

 f
s
t


Now choose some starting population vector u = (f, s, t) and choose some
number of years N . What is the new population after N years?

Anu

Demo

http://textbooks.math.gatech.edu/ila/demos/rabbits/book_demo.html


Section 5.1

Eigenvectors and eigenvalues



Eigenvectors and Eigenvalues

Suppose A is an n× n matrix and there is a v 6= 0 in Rn and λ in R so that

Av = λv

then v is called an eigenvector for A, and λ is the corresponding eigenvalue.

In simpler terms: Av is a scalar multiple of v.

In other words: Av points in the same direction as v.

Think of this in terms of inputs and outputs!

eigen = characteristic (or: self)

This the the most important definition in the course.

Demo

https://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=2,1:1,1&nospace&vers=142dea


Eigenvectors and Eigenvalues

Suppose A is an n× n matrix and there is a v 6= 0 in Rn and λ in R so that

Av = λv

then v is called an eigenvector for A, and λ is the corresponding eigenvalue.

Can you find any eigenvectors/eigenvalues for the following matrix?

A =

(
2 0
0 3

)

What happens when you apply larger and larger powers of A to a vector?



Rabbits

What’s up with them?



Eigenvectors and Eigenvalues

When we apply large powers of the matrix

A =

(
2 0
0 3

)
to a vector v not on the x-axis, we see that Anv gets closer and closer to the
y-axis, and it’s length gets approximately tripled each time. This is because the
largest eigenvalue is 3 and its eigenspace is the y-axis.

For the rabbit matrix  0 6 8
1
2

0 0
0 1

2
0


We will see that 2 is the largest eigenvalue, and its eigenspace is the span of
the vector (16, 4, 1). That’s why all populations of rabbits tend towards the
ratio 16:4:1 and why the population approximately doubles each year.



Eigenvectors and Eigenvalues
Examples

A =

 0 6 8
1/2 0 0

0 1/2 0

 , v =

 16
4
1

 , λ = 2

A =

(
2 2
−4 8

)
, v =

(
1
1

)
, λ = 4

How do you check?



Eigenvectors and Eigenvalues
Confirming eigenvectors

Which of

(
1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
2
1

)
,

(
0
0

)
are eigenvectors of (

1 1
1 1

)
?

What are the eigenvalues?

Poll



Eigenvectors and Eigenvalues
Confirming eigenvalues

Confirm that λ = 3 is an eigenvalue of A =

(
2 −4
−1 −1

)
.

(Any eigenvector you find is called a 3-eigenvector.)

We need a non-zero vector v that satisfies Av = 3v, or

Av − 3v = 0

Av − 3Iv = 0

(A− 3I)v = 0(
−1 −4
−1 −4

)
v = 0

Row reduction yields

(
1 4
0 0

)
v = 0, which has infinitely many solutions.

So there are non-zero v that satisfy Av = 3v, which means that λ = 3 is an
eigenvalue of A.

So: λ is an eigenvalue if and only if (A− λI)v = 0 has a nontrivial solution, or
the matrix (A− λI) is not invertible, or det(A− λI) = 0.

What is a general procedure for finding eigenvalues?

λ is an eigenvalue of A ⇔ A− λI is not invertible.



Eigenvectors and Eigenvalues
Confirming eigenvalues

The following are equivalent:

• λ is an eigenvalue of A
• Nul(A− λI) is nontrivial

So the recipe for checking if λ is an eigenvalue of A is:

• subtract λ from the diagonal entries of A
• row reduce
• check if there are fewer than n pivots

Confirm that λ = 1 is not an eigenvalue of A =

(
2 −4
−1 −1

)
.

We need a non-zero vector v that satisfies Av = 3v, or

Av − 3v = 0

Av − 3Iv = 0

(A− 3I)v = 0(
−1 −4
−1 −4

)
v = 0

Row reduction yields

(
1 4
0 0

)
v = 0, which has infinitely many solutions.

So there are non-zero v that satisfy Av = 3v, which means that λ = 3 is an
eigenvalue of A.

So: λ is an eigenvalue if and only if (A− λI)v = 0 has a nontrivial solution, or
the matrix (A− λI) is not invertible, or det(A− λI) = 0.

What is a general procedure for finding eigenvalues?

λ is an eigenvalue of A ⇔ A− λI is not invertible.



Eigenspaces

Let A be an n× n matrix. The set of eigenvectors for a given eigenvalue λ of
A (plus the zero vector) is a subspace of Rn called the λ-eigenspace of A.

Why is this a subspace?

Fact. λ-eigenspace for A = Nul(A− λI)

Example. Find the eigenspaces for λ = 2 and λ = −1 and sketch.(
5 −6
3 −4

)



Eigenspaces
Bases

Find a basis for the 2–eigenspace: 4 −1 6
2 1 6
2 −1 8





Eigenspaces
Bases

Find a basis for the 2–eigenspace:(
2 0
0 2

)



Eigenspaces
Bases

Find a basis for the 2–eigenspace: 2 0 0
0 2 0
0 0 0





Eigenspaces
Bases

Find a basis for the 2–eigenspace:(
1 5
0 1

)



Eigenvalues
And invertibility

Fact. A invertible ⇔ 0 is not an eigenvalue of A

Why?



Eigenvalues
Triangular matrices

Fact. The eigenvalues of a triangular matrix are the diagonal entries.

Why?

Important! You can not find the eigenvalues by row reducing first! After you
find the eigenvalues, you row reduce A− λI to find the eigenspaces. But once
you start row reducing the original matrix, you change the eigenvalues.



Eigenvalues
Distinct eigenvalues

Fact. If v1 . . . vk are eigenvectors that correspond to distinct eigenvalues
λ1, . . . λk, then {v1, . . . , vk} are linearly independent.

Why?

Think about the case k = 2. If v1, v2 are linearly dependent we can’t
have different λ1 and λ2.

If k = 3, and λ1 = 1, λ2 = 2, there are no other eigenvectors in the v1v2 plane.
Any other eigenvector must be linearly independent.

Consequence. An n× n matrix has at most n distinct eigenvalues.



Eigenvalues geometrically

If v is an eigenvector of A then that means v and Av are scalar multiples, i.e.
they lie on a line.

Without doing any calculations, find the eigenvectors and eigenvalues of the
matrices corresponding to the following linear transformations:

• Reflection about a line in R2 (doesn’t matter which line!)

• Orthogonal projection onto a line in R2 (doesn’t matter which line!)

• Scaling of R2 by 3

• (Standard) shear of R2

• Orthogonal projection to a plane in R3 (doesn’t matter which plane!)

Demo

https://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nospace&vers=142dea


Eigenvalues for rotations?

If v is an eigenvector of A then that means v and Av are scalar multiples, i.e.
they lie on a line.

What are the eigenvectors and eigenvalues for rotation of R2 by π/2
(counterclockwise)?

Demo

https://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:1,0&nospace&vers=142dea


Summary of Section 5.1

• If v 6= 0 and Av = λv then λ is an eigenvector of A with eigenvalue λ

• Given a matrix A and a vector v, we can check if v is an eigenvector for
A: just multiply

• Recipe: The λ-eigenspace of A is the solution to (A− λI)x = 0

• Fact. A invertible ⇔ 0 is not an eigenvalue of A

• Fact. If v1 . . . vk are distinct eigenvectors that correspond to distinct
eigenvalues λ1, . . . λk, then {v1, . . . , vk} are linearly independent.

• We can often see eigenvectors and eigenvalues without doing calculations



Typical exam questions 5.1

• Find the 2-eigenvectors for the matrix 0 13 12
1/4 0 0

0 1/2 0


• True or false: The zero vector is an eigenvector for every matrix.

• How many different eigenvalues can there be for an n× n matrix?

• Consider the reflection of R2 about the line y = 7x. What are the
eigenvalues (of the standard matrix)?

• Consider the π/2 rotation of R3 about the z-axis. What are the
eigenvalues (of the standard matrix)?



R0



R0

For a given virus, R0 is the average number of people that each infected
person infects. If R0 is large, that is bad. Patient zero infects R0 people,
who then infect R2

0 people, who then infect R3
0 people. That is

exponential growth. (If R0 is less than 1, then that’s good.)



R0

For a given virus, R0 is the average number of people that each infected
person infects. If R0 is large, that is bad. Patient zero infects R0 people,
who then infect R2

0 people, who then infect R3
0 people. That is

exponential growth.

Whenever we see an exponential growth rate, we should think:
eigenvalue.

It turns out that R0 is an eigenvalue. The rough idea is very similar to
our rabbit example: split the population into compartments, figure out
how often each compartment infects each other compartment. That’s a
matrix. The largest eigenvalue is R0.



R0 is an eigenvalue

It turns out that R0 is an eigenvalue. The rough idea is very similar to
our rabbit example: split the population into compartments, figure out
how often each compartment infects each other compartment.

For malaria, the compartments might be mosquitoes and humans.

For a sexually transmitted disease in a heterosexual population, the
compartments might be males and females.



R0 is an eigenvalue

It turns out that R0 is an eigenvalue. The rough idea is very similar to
our rabbit example: split the population into compartments, figure out
how often each compartment infects each other compartment.

The SIR model has compartments for Susceptible, Infected, and
Recovered.

The arrows are governed by differential equations (Math 2552). Why do
the labels on the arrows make sense? (The greek letters are constants).

There is a nice discussion of this by James Holland Jones (Stanford).

Paper

http://people.math.gatech.edu/~dmargalit7/classes/math1553Spring2020/JonesR0.pdf


Bell curves

The growth rate of infection does not stay exponential forever, because
the recovered population has immunity. That’s where you get these bell
curves.



Section 5.2
The characteristic polynomial



Outline of Section 5.2

• How to find the eigenvalues, via the characteristic polynomial

• Techniques for the 3× 3 case



Characteristic polynomial

Recall:

λ is an eigenvalue of A⇐⇒ A− λI is not invertible

So to find eigenvalues of A we solve

det(A− λI) = 0

The left hand side is a polynomial, the characteristic polynomial of A.

The roots of the characteristic polynomial are the eigenvalues of A.



The eigenrecipe

Say you are given a square matrix A.

Step 1. Find the eigenvalues of A by solving

det(A− λI) = 0

Step 2. For each eigenvalue λi the λi-eigenspace is the solution to

(A− λiI)x = 0

To find a basis, find the vector parametric solution, as usual.



Characteristic polynomial

Find the characteristic polynomial and eigenvalues of(
5 2
2 1

)

λ2 − 6λ+ 1

6±
√
32

2
= 3± 2

√
2



Two shortcuts for 2× 2 eigenvectors

Find the eigenspaces for the eigenvalues on the last page. Two tricks.

(1) We do not need to row reduce A− λI by hand; we know the bottom
row will become zero.

(2) Then if the reduced matrix is:

A =

(
x y
0 0

)
the eigenvector is

A =

(
−y
x

)



3× 3 matrices

The 3× 3 case is harder. There is a version of the quadratic formula for
cubic polynomials, called Cardano’s formula. But it is more complicated.
It looks something like this:

There is an even more complicated formula for quartic polynomials.

One of the most celebrated theorems in math, the Abel–Ruffini theorem,
says that there is no such formula for quintic polynomials.



Characteristic polynomials
3× 3 matrices

Find the characteristic polynomial of the following matrix. 7 0 3
−3 2 −3
−3 0 −1


What are the eigenvalues? Hint: Don’t multiply everything out!



Characteristic polynomials
3× 3 matrices

Find the characteristic polynomial of the following matrix. 7 0 3
−3 2 −3
4 2 0


Answer: −λ3 + 9λ2 − 8λ

What are the eigenvalues?



Characteristic polynomials
3× 3 matrices

Find the characteristic polynomial of the rabbit population matrix. 0 6 8
1
2 0 0
0 1

2 0


Answer:

−λ3 + 3λ+ 2

What are the eigenvalues?

Hint: We already know one eigenvalue! Polynomial long division  

(λ− 2)(−λ2 − 2λ− 1)

Don’t really need long division: the first and last terms of the quadratic
are easy to find; can guess and check the other term.



Characteristic polynomials
3× 3 matrices

Find the characteristic polynomial and eigenvalues. 5 −2 2
4 −3 4
4 −6 7


Characteristic polynomial: −λ3 + 9λ2 − 23λ+ 15

This time we don’t know any of the roots! We can use the rational root
theorem: any integer root of a polynomial with leading coefficient ±1
divides the constant term.

So we plug in ±1, ±3, ±5, ±15 into the polynomial and hope for the
best. Luckily we find that 1, 3, and 5 are all roots, so we found all the
eigenvalues!

If we were less lucky and found only one eigenvalue, we could again use
long division like on the last slide.



Eigenvalues
Triangular matrices

Fact. The eigenvalues of a triangular matrix are the diagonal entries.

Why?

Warning! You cannot find eigenvalues by row reducing and then using
this fact. You need to work with the original matrix. Finding eigenspaces
involves row reducing A− λI, but there is no row reduction in finding
eigenvalues.



Characteristic polynomials, trace, and determinant

The trace of a matrix is the sum of the diagonal entries.

The characteristic polynomial always looks like:

(−1)nλn + (−1)n−1 trace(A) λn−1 + ??? λn−2 + · · · ??? λ+ det(A)

So for a 2× 2 matrix:

λ2 − trace(A)λ+ det(A)

And for a 3× 3 matrix:

−λ3 + trace(A)λ2 − ??? λ+ det(A)



Characteristic polynomials, trace, and determinant

The trace of a matrix is the sum of the diagonal entries.

The characteristic polynomial always looks like:

(−1)nλn + (−1)n−1 trace(A) λn−1 + ??? λn−2 + · · · ??? λ+ det(A)

Consequence 1. The constant term is zero ⇔ A is not invertible

Consequence 2. The determinant is the product of the eigenvalues.



Algebraic multiplicity

The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root
of the characteristic polynomial.

Example. Find the algebraic multiplicities of the eigenvalues for
5 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 5



Fact. The sum of the algebraic multiplicities of the (real) eigenvalues of
an n× n matrix is at most n.



Summary of Section 5.2

• The characteristic polynomial of A is det(A− λI)
• The roots of the characteristic polynomial for A are the eigenvalues

• Techniques for 3× 3 matrices:
I Don’t multiply out if there is a common factor
I If there is no constant term then factor out λ
I If the matrix is triangular, the eigenvalues are the diagonal entries
I Guess one eigenvalue using the rational root theorem, reverse

engineer the rest (or use long division)
I Use the geometry to determine an eigenvalue

• Given an square matrix A:
I The eigenvalues are the solutions to det(A− λI) = 0
I Each λi-eigenspace is the solution to (A− λiI)x = 0



Typical Exam Questions 5.2

• True or false: Every n× n matrix has an eigenvalue.

• True or false: Every n× n matrix has n distinct eigenvalues.

• True or false: The nullity of A− λI is the dimension of the
λ-eigenspace.

• What are the eigenvalues for the standard matrix for a reflection?

• What are the eigenvalues and eigenvectors for the n×n zero matrix?

• Find the eigenvalues of the following matrix. 1 2 1
0 −5 0
1 8 0


• Find the eigenvalues of the following matrix. 5 6 2

0 −1 −8
1 0 2


Hint: All of the eigenvalues are integers. Use the rational root
theorem to guess one of the eigenvalues, and then factor out a linear
term.



Eigenvalues in Structural Engineering

Watch this video about the Tacoma Narrows bridge. Watch

Here are some toy models. Check it out

The masses move the most at their natural frequencies ω. To find
those, use the spring equation: mx′′ = −kx  sin(ωt).

With 3 springs and 2 equal masses, we get:

mx′′1 = −kx1 + k(x2 − x1)
mx′′2 = −kx2 + k(x1 − x2)

Guess a solution x1(t) = A1(cos(ωt) + i sin(ωt)) and similar for
x2. Finding ω reduces to finding eigenvalues of

(−2k k
k −2k

)
.

Eigenvectors: (1, 1) & (1,−1) (in/out of phase) Details

https://www.youtube.com/watch?v=XggxeuFDaDU
https://www.acs.psu.edu/drussell/Demos/multi-dof-springs/multi-dof-springs.html
https://www.math.gatech.edu/~margalit/classes/math1553Fall2018/oscillators.pdf


Section 5.4
Diagonalization



Section 5.4 Outline

• Diagonalization

• Using diagonalization to take powers

• Algebraic versus geometric dimension



We understand diagonal matrices

We completely understand what diagonal matrices do to Rn. For
example: (

2 0
0 3

)

We have seen that it is useful to take powers of matrices: for
instance in computing rabbit populations.

If A is diagonal, powers of A are easy to compute. For example:(
2 0
0 3

)10

=



Powers of matrices that are similar to diagonal ones

What if A is not diagonal? Suppose want to understand the matrix

A =

(
5/4 3/4
3/4 5/4

)
geometrically? Or take it’s 10th power? What would we do?

What if I give you the following equality:(
5/4 3/4
3/4 5/4

)
=

(
1 −1
1 1

)(
2 0
0 1/2

)(
1 −1
1 1

)−1
A = C D C−1

This is called diagonalization.

How does this help us understand A? Or find A10?



Powers of matrices that are similar to diagonal ones

What if I give you the following equality:(
5/4 3/4
3/4 5/4

)
=

(
1 −1
1 1

)(
2 0
0 1/2

)(
1 −1
1 1

)−1
A = C D C−1

This is called diagonalization.

How does this help us understand A? Or find A10? Demo

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=2,0:0,1/2&v1=1,1,0&v2=-1,1,0


Diagonalization

Suppose A is n× n. We say that A is diagonalizable if we can
write:

A = CDC−1 D = diagonal

We say that A is similar to D.

How does this factorization of A help describe what A does to Rn?
How does this help us take powers of A?

Understanding the rabbit example: since 2 is the largest
eigenvalue, (almost) all other vectors get pulled towards that
eigenvector. Compare with the example from the last slide.



Diagonalization
The recipe

Theorem. A is diagonalizable ⇔ A has n linearly independent
eigenvectors.

In this case

A =

 | | |
v1 v2 · · · vn
| | |


 λ1

. . .

λn


 | | |
v1 v2 · · · vn
| | |

−1

= C D C−1

where v1, . . . , vn are linearly independent eigenvectors and
λ1, . . . , λn are the corresponding eigenvalues, with multiplicity, in
order.

Why?

• The matrix (v1 v2 · · · vn)−1 takes each vi to ei
• D stretches each ei by λi
• C takes the ei back to vi

So net effect is stretching each vi by λi.



Example

Diagonalize if possible. (
2 6
0 −1

)



Example

Diagonalize if possible. (
3 1
0 3

)



Example

Diagonalize if possible. (
3/4 1/4
1/4 3/4

)
Demo

Hint: the eigenvalues are 1 and 1/2

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=1/2,0:0,1&v1=-1,1,0&v2=1,1,0


More Examples

Diagonalize if possible. 1 0 2
0 1 0
2 0 1

  2 0 0
1 2 1
−1 0 1


Hint: the eigenvalues (with multiplicity) are 3,−1, 1 and 2, 2, 1



Poll

Which are diagonalizable?(
1 2
0 1

) (
1 2
0 2

) (
2 0
0 2

)
Poll



Distinct Eigenvalues

Fact. If A has n distinct eigenvalues, then A is diagonalizable.

Why?



Non-Distinct Eigenvalues

Theorem. Suppose

• A = n× n, has eigenvalues λ1, . . . , λk

• ai = algebraic multiplicity of λi

• di = dimension of λi eigenspace (“geometric multiplicity”)

Then

1. 1 ≤ di ≤ ai for all i

2. A is diagonalizable ⇔ Σdi = n
⇔ Σai = n and di = ai for all i

So the recipe for checking diagonalizability is:

• If there are not n eigenvalues with multiplicity, then stop.

• For each eigenvalue with alg. mult. greater than 1, check if
the geometric multiplicity is equal to the algebraic multiplicity.
If any of them are smaller, the matrix is not diagonalizable.

• Otherwise, the matrix is diagonalizable.



More rabbits

Which ones are diagonalizable? 0 6 8
1
2 0 0
0 1

2 0

  0 4 4
1
2 0 0
0 1

2 0


Hint: the characteristic polynomials are −λ3 + 3λ+ 2 and
−λ3 + 2λ+ 1 and both have rational roots.



Summary of Section 5.4

• A is diagonalizable if A = CDC−1 where D is diagonal

• A diagonal matrix stretches along its eigenvectors by the
eigenvalues, similar to a diagonal matrix

• If A = CDC−1 then Ak = CDkC−1

• A is diagonalizable ⇔ A has n linearly independent
eigenvectors ⇔ the sum of the geometric dimensions of the
eigenspaces in n

• If A has n distinct eigenvalues it is diagonalizable



Typical Exam Questions 5.4

• True or False. If A is a 3× 3 matrix with eigenvalues 0, 1,
and 2, then A is diagonalizable.

• True or False. It is possible for an eigenspace to be
0-dimensional.

• True or False. Diagonalizable matrices are invertible.

• True or False. Diagonal matrices are diagonalizable.

• True or False. Upper triangular matrices are diagonalizable.

• Find the 100th power of
(
2 6
0 −1

)
.

• For each of the following matrices, diagonalize or show they
are not diagonalizable: 2 0 0

1 2 1
−1 0 1

  2 4 6
0 2 2
0 0 4





Taffy pullers

How efficient is this taffy puller?

If you run the taffy puller, the taffy starts to look like the shape on the
right. Every rotation of the machine changes the number of strands of
taffy by a matrix:  1 0 2

2 1 2
4 2 3


The largest eigenvalue λ of this matrix describes the efficiency of the
taffy puller. With every rotation, the number of strands multiplies by λ.



Section 5.5
Complex Eigenvalues



Outline of Section 5.5

• Rotation matrices have no eigenvectors

• Crash course in complex numbers

• Finding complex eigenvectors and eigenvalues

• Complex eigenvalues correspond to rotations + dilations

Demo Demo

https://textbooks.math.gatech.edu/ila/demos/dynamics2.html?mat=sqrt(3/2),-1/sqrt(2):1/sqrt(2),sqrt(3/2)&v1=2,1&v2=0,1&y=0,1&matnames=A,B,C&vers=142dea
https://textbooks.math.gatech.edu/ila/demos/dynamics2.html?mat=1,-1:1,1&eigenz=2&v1=-7/6,2/6,5/6&v2=-1/6,-9/6,0&v3=2/6,-1/6,3/6&y=1,0,.5&matnames=A,B,C&vers=142dea


A matrix without an eigenvector

Recall that rotation matrices like(
1 −1
1 1

)
and (

0 −1
1 0

)
have no eigenvectors. Why?



Imaginary numbers

Problem. When solving polynomial equations, we often run up against
the issue that we can’t take the square root of a negative number:

x2 + 1 = 0

Solution. Take square roots of negative numbers:

x = ±
√
−1

We usually write
√
−1 as i (for “imaginary”), so x = ±i.

Now try solving these:
x2 + 3 = 0

x2 − x+ 1 = 0



Complex numbers

We can add/multiply (and divide!) complex numbers:

(2− 3i) + (−1 + i) =

(2− 3i)(−1 + i) =



Complex numbers

The complex numbers are the numbers

C = {a+ bi | a, b in R}

We can conjugate complex numbers: a+ bi = a− bi



Complex numbers and polynomials

Fundamental theorem of algebra. Every polynomial of degree n has
exactly n complex roots (counted with multiplicity).

Fact. If z is a root of a real polynomial then z is also a root.

So what are the possibilities for degree 2, 3 polynomials?

What does this have to do with eigenvalues of matrices?



Complex eigenvalues

Say A is a square matrix with real entries.

We can now find complex eigenvectors and eigenvalues.

Fact. If λ is an eigenvalue of A with eigenvector v then λ is an
eigenvalue of A with eigenvector v.

Why?



Trace and determinant

Now that we have complex eigenvalues, we have the following fact.

Fact. The sum of the eigenvalues of A (with multiplicity) is the trace of
A and the product of the eigenvalues of A (with multiplicity) is the
determinant.

Indeed, by the fundamental theorem of algebra, the characteristic
polynomial factors as:

(x1 − λ)(x2 − λ) · · · (xn − λ).

From this we see that the product of the eigenvalues x1x2 · · ·xn is the
constant term, which we said was the determinant, and the sum
x1 + x2 + · · ·+ xn is (−1)n−1 times the λn−1 term, which we said was
the trace.



Complex eigenvalues

Find the complex eigenvalues and eigenvectors for(
0 −1
1 0

)



Three shortcuts for complex eigenvectors

Suppose we have a 2× 2 matrix with complex eigenvalue λ.

(1) We do not need to row reduce A− λI by hand; we know the bottom
row will become zero.

(2) Then if the reduced matrix is:

A =

(
x y
0 0

)
the eigenvector is

A =

(
−y
x

)
(3) Also, we get the other eigenvalue/eigenvector pair for free:
conjugation.



Complex eigenvalues

Find the complex eigenvalues and eigenvectors for

(
1 −1
1 1

) (
1 −2
1 3

)  1 0 0
0 0 −2
0 2 0





Summary of Section 5.5

• Complex numbers allow us to solve all polynomials completely, and
find n eigenvalues for an n× n matrix, counting multiplicity

• If λ is an eigenvalue with eigenvector v then λ is an eigenvalue with
eigenvector v



Typical Exam Questions 5.5

• True/False. If v is an eigenvector for A with complex entries then
i · v is also an eigenvector for A.

• True/False. If (i, 1) is an eigenvector for A then (i,−1) is also an
eigenvector for A.

• If A is a 4× 4 matrix with real entries, what are the possibilities for
the number of non-real eigenvalues of A?

• Find the eigenvalues and eigenvectors for the following matrices.

(
3 −2
4 −1

) (
−1 −4
1 −1

)  1 0 −2
1 3 1
2 0 1





Section 5.6
Stochastic Matrices (and Google!)



Outline of Section 5.6

• Stochastic matrices and applications

• The steady state of a stochastic matrix

• Important web pages



Stochastic matrices

A stochastic matrix is a non-negative square matrix where all of
the columns add up to 1.

Examples:

(
1/4 3/5
3/4 2/5

)  .3 .4 .5
.3 .4 .3
.4 .2 .2

  1/2 1 1/2
1/2 0 1/4

0 0 1/4





Application: Rental Cars (or Redbox...)

Say your car rental company has 3 locations. Make a matrix whose
ij entry is the fraction of cars at location j that end up at location
i. For example,  .3 .4 .5

.3 .4 .3

.4 .2 .2


Note the columns sum to 1. Why?

If there are 100 cars at each location on the first day, and every car
gets rented, how many cars are at each location on the second
day? third day? nth day?



Application: Web pages

Make a matrix whose ij entry is the fraction of (randomly surfing)
web surfers at page j that end up at page i. If page i has N links
then the ij-entry is either 0 or 1/N .


0 0 1 1/2
1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0


Which web page seems most important?



Properties of stochastic matrices

Let A be a stochastic matrix.

Fact 1. One of the eigenvalues of A is 1 and all other eigenvalues
have absolute value at most 1.

Why?



Positive stochastic matrices

Let A be a positive stochastic matrix, meaning all entries are
positive.

Fact 2. The 1-eigenspace of A is 1-dimensional; it has a positive
eigenvector.

The unique such eigenvector with entries adding to 1 is called the
steady state vector.

Example. If
(

1
2
3

)
is a 1-eigenvector, what’s the steady state vector?



Example

Find the steady state vector.

A =

(
1/4 3/4
3/4 1/4

)



More about positive stochastic matrices

Let A be a positive stochastic matrix, meaning all entries are
positive.

Fact 3. Under iteration, all nonzero vectors approach a multiple of
the steady state vector. The multiple is the sum of the entries of
the original vector.

Demo

The last fact tells us how to distribute rental cars, and also tells us
the importance of web pages!

https://textbooks.math.gatech.edu/ila/demos/dynamics2.html?mat=1,0:0,1/2&v1=1,1&v2=1,-1&vec=false&path=false&vers=98bfa4


Example

To what vector does An ( 19 ) approach as n→∞

A =

(
1/4 3/4
3/4 1/4

)



Application: Rental Cars

The rental car matrix is:  .3 .4 .5
.3 .4 .3
.4 .2 .2


Its steady state vector is: 7/18

6/18
5/18

 ≈
 .39

.33

.28





Application: Web pages

The web page matrix is:
0 0 1 1/2
1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0


Its steady state vector is approximately

.39

.13

.29

.19


and so the first web page is the most important.



Fine print

There are a couple of problems with the web page matrix as given:

• What happens if there is a web page with no links?

• What if the internet graph is not connected?

• How do you find eigenvectors for a huge matrix?

Here are the solutions:

• Make a column with 1/n in each entry
(the surfer goes to a new page randomly).

• Let B be the matrix with all entries equal to 1, replace A with

.85 ∗A+ .15 ∗B

• Approximate via iteration!



Summary of Section 5.6

• A stochastic matrix is a non-negative square matrix where all
of the columns add up to 1.

• Every stochastic matrix has 1 as an eigenvalue, and all other
eigenvalues have absolute value at most 1.

• A positive stochastic matrix has 1-dimensional eigenspace and
has a positive eigenvector. A positive 1-eigenvector with
entries adding to 1 is called a steady state vector.

• For a positive stochastic matrix, all nonzero vectors approach
the steady state vector under iteration.

• Steady state vectors tell us the importance of web pages (for
example).



Typical Exam Questions 5.6

• Is there a stochastic matrix where the 1-eigenspace has
dimension greater than 1?

• Find the steady state vector for this matrix:

A =

(
1/2 1/3
1/2 1/3

)
To what vector does An ( 57 ) approach as n→∞?

• Find the steady state vector for this matrix:

A =

 1/3 1/5 1/4
1/3 2/5 1/2
1/3 2/5 1/4


• Make your own internet and see if you can guess which web

page is the most important. Check your answer using the
method described in this section.



Chapter 6
Orthogonality



Where are we?

We have learned to solve Ax = b and Av = λv.

We have one more main goal.

What if we can’t solve Ax = b? How can we solve it as closely as
possible?

The answer relies on orthogonality.



Section 6.1
Dot products and Orthogonality



Outline

• Dot products

• Length and distance

• Orthogonality



Dot product

Say u = (u1, . . . , un) and v = (v1, . . . , vn) are vectors in Rn

u · v =

n∑
i=1

uivi

= u1v1 + · · ·+ unvn

= uT v

Example. Find (1, 2, 3) · (4, 5, 6).



Dot product

Some properties of the dot product

• u · v = v · u
• (u+ v) · w = u · w + v · w
• (cu) · v = c(u · v)
• u · u ≥ 0

• u · u = 0 ⇔ u = 0



Length

Let v be a vector in Rn

‖v‖ =
√
v · v

= length of v

Why? Pythagorean Theorem

Fact. ‖cv‖ = |c|‖v‖

v is a unit vector of ‖v‖ = 1

Problem. Find the unit vector in the direction of (1, 2, 3, 4).



Distance

The distance between v and w is the length of v − w (or w − v!).

Problem. Find the distance between (1, 1, 1) and (1, 4,−3).



Orthogonality

Fact. u ⊥ v ⇔ u · v = 0

Why? Pythagorean theorem again!

u ⊥ v ⇔ ‖u‖2 + ‖v‖2 = ‖u− v‖2

⇔ u · u+ v · v = u · u− 2u · v + v · v
⇔ u · v = 0

Problem. Find a vector in R3 orthogonal to (1, 2, 3).



Summary of Section 6.1

• u · v =
∑
uivi

• u · u = ‖u‖2 (length of u squared)

• The unit vector in the direction of v is v/‖v‖.
• The distance from u to v is ‖u− v‖
• u · v = 0⇔ u ⊥ v



Section 6.2
Orthogonal complements



Outline of Section 6.2

• Orthogonal complements

• Computing orthogonal complements



Orthogonal complements

W = subspace of Rn

W⊥ = {v in Rn | v ⊥ w for all w in W}

Question. What is the orthogonal complement of a line in R3?
What about the orthogonal complement of a plane in R3?

Demo Demo

https://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.3,0,1&captions=orthog&range=3&labels=v&vers=5f9d00
https://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.957,0,-.287&v2=0,1,0&captions=orthog&range=3&labels=v,w&vers=5f9d00


Orthogonal complements

W = subspace of Rn

W⊥ = {v in Rn | v ⊥ w for all w in W}

Facts.

1. W⊥ is a subspace of Rn (it’s a null space!)

2. (W⊥)⊥ = W

3. dimW + dimW⊥ = n (rank-nullity theorem!)

4. If W = Span{w1, . . . , wk} then
W⊥ = {v in Rn | v ⊥ wi for all i}

5. The intersection of W and W⊥ is {0}.

For items 1 and 3, which linear transformation do we use?



Orthogonal complements
Finding them

Problem. Let W = Span{(1, 1,−1)}. Find the equation of the
plane W⊥.

Find a basis for W⊥.



Orthogonal complements
Finding them

Problem. Let W = Span{(1, 1,−1), (−1, 2, 1)}. Find a system of
equations describing the line W⊥.

Find a basis for W⊥.



Orthogonal complements
Finding them

Recipe. To find (basis for) W⊥, find a basis for W , make those
vectors the rows of a matrix, and find (a basis for) the null space.

Why? Ax = 0 ⇔ x is orthogonal to each row of A



Orthogonal complements
Finding them

Recipe. To find (basis for) W⊥, find a basis for W , make those
vectors the rows of a matrix, and find (a basis for) the null space.

Why? Ax = 0 ⇔ x is orthogonal to each row of A

In other words:

Theorem. A = m× n matrix

(RowA)⊥ = NulA

Geometry ↔ Algebra

(The row space of A is the span of the rows of A.)



Orthogonal decomposition

Fact. Say W is a subspace of Rn. Then any vector v in Rn can be
written uniquely as

v = vW + vW⊥

where vW is in W and vW⊥ is in W⊥.

Why? Say that w1+w′1 = w2+w′2 where w1 and w2 are in W and
w′1 and w′2 are in W⊥. Then w1 − w2 = w′2 − w′1. But the former
is in W and the latter is in W⊥, so they must both be equal to 0.

Demo

Demo

Next time: Find vW and vW⊥ .

https://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,.5&vec=1,-1&range=3&mode=decomp&closed&subname=W&vers=5f9d00
https://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed&vers=5f9d00


Orthogonal decomposition

Fact. Say W is a subspace of Rn. Then any vector v in Rn can be
written uniquely as

v = vW + vW⊥

where vW is in W and vW⊥ is in W⊥.

Why? Say that w1+w′1 = w2+w′2 where w1 and w2 are in W and
w′1 and w′2 are in W⊥. Then w1 − w2 = w′2 − w′1. But the former
is in W and the latter is in W⊥, so they must both be equal to 0.

Demo

Demo

Next time: Find vW and vW⊥ .

https://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,.5&vec=1,-1&range=3&mode=decomp&closed&subname=W&vers=5f9d00
https://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed&vers=5f9d00


Orthogonal Projections

Many applications, including:



Summary of Section 6.2

• W⊥ = {v in Rn | v ⊥ w for all w in W}
• Facts:

1. W⊥ is a subspace of Rn

2. (W⊥)⊥ = W
3. dimW + dimW⊥ = n
4. If W = Span{w1, . . . , wk} then

W⊥ = {v in Rn | v ⊥ wi for all i}
5. The intersection of W and W⊥ is {0}.

• To find W⊥, find a basis for W , make those vectors the rows
of a matrix, and find the null space.

• Every vector v can be written uniquely as v = vW + vW⊥ with
vW in W and vW⊥ in W⊥



Typical Exam Questions 6.2

• What is the dimension of W⊥ if W is a line in R10?

• What is W⊥ if W is the line y = mx in R2?

• If W is the x-axis in R2, and v =
(

7
−3

)
, write v as vW + vW⊥ .

• If W is the line y = x in R2, and v =
(

7
−3

)
, write v as

vW + vW⊥ .

• Find a basis for the orthogonal complement of the line

through
(

1
2
3

)
in R3.

• Find a basis for the orthogonal complement of the line

through

(
1
2
3
4

)
in R4.

• What is the orthogonal complement of x1x2-plane in R4?



Section 6.3
Orthogonal projection



Outline of Section 6.3

• Orthogonal projections and distance

• A formula for projecting onto any subspace

• A special formula for projecting onto a line

• Matrices for projections

• Properties of projections



Orthogonal Projections

Let b be a vector in Rn and W a subspace of Rn.

The orthogonal projection of b onto W the vector obtained by
drawing a line segment from b to W that is perpendicular to W .

Fact. The following three things are all the same:

• The orthogonal projection of b onto W

• The vector bW (the W -part of b) algebra!

• The closest vector in W to b geometry!



Orthogonal Projections

Theorem. Let W = Col(A). For any vector b in Rn, the equation

ATAx = AT b

is consistent and the orthogonal projection bW is equal to Ax
where x is any solution.

Why? Choose x̂ so that Ax̂ = bW . We know b− bW = b−Ax̂ is
in W⊥ = Nul(AT ) and so

0 = AT (b−Ax̂) = AT b−ATAx̂

 ATAx̂ = AT b



Orthogonal Projections

Theorem. Let W = Col(A). For any vector b in Rn, the equation

ATAx = AT b

is consistent and the orthogonal projection bW is equal to Ax
where x is any solution.

Why? Choose x̂ so that Ax̂ = bW . We know b− bW = b−Ax̂ is
in W⊥ = Nul(AT ) and so

0 = AT (b−Ax̂) = AT b−ATAx̂

 ATAx̂ = AT b



Orthogonal Projections

Theorem. Let W = Col(A). For any vector b in Rn, the equation

ATAx = AT b

is consistent and the orthogonal projection bW is equal to Ax
where x is any solution.

What does the theorem give when W = Span{u} is a line?



Orthogonal Projection onto a line

Special case. Let L = Span{u}. For any vector b in Rn we have:

bL =
u · b
u · u

u

Find bL and bL⊥ if b =

 −2−3
−1

 and u =

 −11
1

.



Orthogonal Projections

Theorem. Let W = Col(A). For any vector b in Rn, the equation

ATAx = AT b

is consistent and the orthogonal projection bW is equal to Ax
where x is any solution.

Example. Find bW if b =

 6
5
4

, W = Span


 1

0
1

 ,

 1
1
0


Steps. Find ATA and AT b, then solve for x, then compute Ax.

Question. How far is b from W?



Orthogonal Projections

Example. Find bW if b =

 6
5
4

, W = Span


 1

0
1

 ,

 1
1
0


Steps. Find ATA and AT b, then solve for x, then compute Ax.

Question. How far is b from W?



Orthogonal Projections

Theorem. Let W = Col(A). For any vector b in Rn, the equation

ATAx = AT b

is consistent and the orthogonal projection bW is equal to Ax
where x is any solution.

Special case. If the columns of A are independent then ATA is
invertible, and so

bW = A(ATA)−1AT b.

Why? The x we find tells us which linear combination of the
columns of A gives us bW . If the columns of A are independent,
there’s only one linear combination.



Matrices for projections

Fact. If the columns of A are independent and W = Col(A) and
T : Rn → Rn is orthogonal projection onto W then the standard
matrix for T is:

A(ATA)−1AT .

Why?

Example. Find the standard matrix for orthogonal projection of R3

onto W = Span


 1

0
1


Example. Find the standard matrix for orthogonal projection of R3

onto W = Span


 1

0
1

 ,

 1
1
0





Projections as linear transformations

Let W be a subspace of Rn and let T : Rn → Rn be the function
given by T (b) = bW (orthogonal projection). Then

• T is a linear transformation

• T (b) = b if and only if b is in W

• T (b) = 0 if and only if b is in W⊥

• T ◦ T = T

• The range of T is W



Properties of projection matrices

Let W be a subspace of Rn and let T : Rn → Rn be the function
given by T (b) = bW (orthogonal projection). Let A be the
standard matrix for T . Then

• The 1–eigenspace of A is W (unless W = 0)

• The 0–eigenspace of A is W⊥ (unless W = Rn)

• A2 = A

• Col(A) = W

• Nul(A) = W⊥

• A is diagonalizable; its diagonal matrix has m 1’s & n−m 0’s
where m = dimW (this gives another way to find A)

You can check these properties for the matrix in the last example.
It would be very hard to prove these facts without any theory. But
they are all easy once you know about linear transformations!



Summary of Section 6.3

• The orthogonal projection of b onto W is bW
• bW is the closest point in W to b.
• The distance from b to W is ‖bW⊥‖.
• Theorem. Let W = Col(A). For any b, the equation

ATAx = AT b is consistent and bW is equal to Ax where x is
any solution.
• Special case. If L = Span{u} then bL = u·b

u·uu

• Special case. If the columns of A are independent then ATA
is invertible, and so bW = A(ATA)−1AT b

• When the columns of A are independent, the standard matrix
for orthogonal projection to Col(A) is A(ATA)−1AT

• Let W be a subspace of Rn and let T : Rn → Rn be the
function given by T (b) = bW . Then
I T is a linear transformation
I etc.

• If A is the standard matrix then
I The 1–eigenspace of A is W (unless W = 0)
I etc.



Typical Exam Questions 6.3

• True/false. The solution to ATAx = AT b is the point in
Col(A) that is closest to b.

• True/false. If v and w are both solutions to ATAx = AT b
then v − w is in the null space of A.

• True/false. If A has two equal columns then ATAx = AT b
has infinitely many solutions for every b.

• Find bL and bL⊥ if b = (1, 2, 3) and L is the span of (1, 2, 1).

• Find bW if b = (1, 2, 3) and W is the span of (1, 2, 1) and
(1, 0, 1). Find the distance from b to W .

• Find the matrix A for orthogonal projection to the span of
(1, 2, 1) and (1, 0, 1). What are the eigenvalues of A? What is
A100?



Section 6.5
Least Squares Problems



Least Squares problems

What if we can’t solve Ax = b? How can we solve it as closely as
possible?

To solve Ax = b as closely as possible, we orthogonally project b
onto Col(A); call the result b̂. Then solve Ax = b̂. This is the
least squares solution to Ax = b.



Outline of Section 6.5

• The method of least squares

• Application to best fit lines/planes

• Application to best fit curves



Least squares solutions

A = m× n matrix.

A least squares solution to Ax = b is an x̂ in Rn so that Ax̂ is as
close as possible to b.

The error is ‖Ax̂− b‖.

Demo

https://textbooks.math.gatech.edu/ila/demos/leastsquares.html?v1=0,1,0&v2=1.1,0,-.2&range=2&vec=1.4,-1.1,1.45&vers=5f9d00


Least squares solutions

A least squares solution to Ax = b is an x̂ in Rn so that Ax̂ is as
close as possible to b.

The error is ‖Ax̂− b‖.

Theorem. The least squares solutions to Ax = b are the solutions
to

(ATA)x = (AT b)

So this is just like what we did before when we were finding the
projection of b onto Col(A). But now we just solve and don’t
(necessarily) multiply the solution by A.



Least squares solutions
Example

Theorem. The least squares solutions to Ax = b are the solutions
to

(ATA)x = (AT b)

Find the least squares solutions to Ax = b for this A and b:

A =

 0 1
1 1
2 1

 b =

 6
0
0


What is the error?



Least squares solutions
Example

Formula: (ATA)x = (AT b)

Find the least squares solution/error to Ax = b:

A =

 0 1
1 1
2 1

 b =

 6
0
0





Least squares solutions

Theorem. Let A be an m× n matrix. The following are
equivalent:

1. Ax = b has a unique least squares solution for all b in Rn

2. The columns of A are linearly independent

3. ATA is invertible

In this case the least squares solution is (ATA)−1(AT b).



Application
Best fit lines

Problem. Find the best-fit line through (0, 6), (1, 0), and (2, 0).

Demo

https://textbooks.math.gatech.edu/ila/demos/bestfit.html?v1=0,6&v2=1,0&v3=2,0&range=7&vers=5f9d00


Best fit lines

What does the best fit line minimize?

1. the sum of the squares of the distances
from the data points to the line

2. the sum of the squares of the vertical
distances from the data points to the line

3. the sum of the squares of the horizontal
distances from the data points to the line

4. the maximal distance from the data
points to the line

Poll



Least Squares Problems
More applications

Determine the least squares problem Ax = b to find the best
parabola y = Cx2 +Dx+ E for the points:

(0, 0), (2, 0), (3, 0), (0, 1)

Demo

https://textbooks.math.gatech.edu/ila/demos/bestfit.html?func=A*x^2+B*x+C&v1=-1,.5&v2=1,-1&v3=2,-.5&v4=3,2&range=5


Least Squares Problems
More applications

Determine the least squares problem Ax = b to find the best fit
ellipse Cx2 +Dxy + Ey2 + Fx+Gy +H = 0 for the points:

(0, 0), (2, 0), (3, 0), (0, 1)

Gauss invented the method of least squares to predict the orbit of
the asteroid Ceres as it passed behind the sun in 1801.



Least Squares Problems
Best fit plane

Determine the least squares problem Ax = b to find the best fit
linear function f(x, y) = Cx+Dy + E

x y f(x, y)

1 0 0
0 1 1
−1 0 3
0 −1 4



Summary of Section 6.5

• A least squares solution to Ax = b is an x̂ in Rn so that Ax̂ is
as close as possible to b.

• The error is ‖Ax̂− b‖.
• The least squares solutions to Ax = b are the solutions to
(ATA)x = (AT b).

• To find a best fit line/parabola/etc. write the general form of
the line/parabola/etc. with unknown coefficients and plug in
the given points to get a system of linear equations in the
unknown coefficients.



Typical Exam Questions 6.5

• Find the best fit line through (1, 0), (2, 1), and (3, 1). What is
the error?

• Find the best fit parabola through (1, 0), (2, 1), (3, 1), and
(3, 0). What is the error?

• True/false. For every set of three points in R2 there is a
unique best fit line.

• True/false. If x̂ is the least squares solution to Ax = b for an
m× n matrix A, then x̂ is the closest point in Rn to b.

• True/false. If x̂ and ŷ are both least squares solutions to
Ax = b then x̂− ŷ is in the null space of A.


