1. Let V be the set of vectors in R^3 given by $\{(a,b,c) \text{ in } R^3 a = -c \text{ and } b = o\}$.
(a). Does V contain the O vector? Yes.
(0,0,0) satisfies that $a=-c$ $(0=-0)$, and $b=0$
(b). Is V closed under addition? Kes.
Soly $M: (a_1, b_1, c_1)$ and $V: (a_2, b_2, c_2)$ are in V .
then we must have $b_1 = b_2 = 0$, $\alpha_1 = -c_1$, $\alpha_2 = -c_2$
Then, as $\alpha_1 + \alpha_2 = -c_1 - c_2$, $b_1 + b_2 = 0$, so $U + V : (\alpha_1 + \alpha_2, b_1 + b_2, c_1 + c_2)$ is still in V
(C). Is V closed under multiplication? Yes.
Say U: (a,, b,, c,) is in V.
then, we must have $a_i = -c_i$, $b_i = 0$.
Then, if we multiply a real number k to $u: ku = (ka_1, kb_1, kc_1)$,
where $k \cdot b_1 = 0$, and $ka_1 = -kC_1$.
So. Ku is still in V.
(d). Is Va subspace of R ³ ? (Tes,
Based on definition. O Zero-vector is in V - meet
Closure under addition — meet
3 Closure under scaler multiplication - meet
So. V is a subspace of R^3 .

2. Let V be the set of vectors in R^3 given by $\{(a,b,c) in R^3 C = 0\}$
(a). Does V contain the O vector? Kes.
(0,0,0) Satisfies that C70
(b). Is V closed under addition? Kes.
Sory $\mathcal{U}: (\alpha_1, b_1, c_1)$ and $\mathcal{V}: (\alpha_2, b_2, c_2)$ are in \mathcal{V} .
then, we must have C170, C270
Then, as CI+C270, SO U+V: (aItaz, bItbz, CI+C2) is still in V.
(c). Is V closed inder multiplication? No
Soy U: (a,, b,, c,) is in V.
then, we must have G.Z.O.
Then, if we multiply a real number k to $u: ku = (ka, kb, kc)$,
where KC_1 might be negative (i.e. $k=-1$), in which case Ku is not in V .
(d). Is Va subspace of R ³ ? No
Based on definition: 1) Zero-vector is in V - meet
Closure under additton — meet
3 Closure under scaler multiplication - closes not meet.
Sio. V is not a subspace of R ³ .

3. When is the set of solutions to a matrix equation a subspace?

Observe that in the row-reduced matrix:

4.

$$\begin{pmatrix} 1 & 0 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 Red " representing pivots.

So, first, second, third columns are pivotal Columns.

Since. the pivot columns of a matrix A form a basis for Col (A)

As we go back to the previous matrix, the first, second, third columns are the vectors spanning Col(A).

So, the solution should be:
$$\int \begin{pmatrix} 1 \\ 1 \\ 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix}$$

Note: $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$ does not span the Col(A), because Col(A) contains vectors vectors whose last coordinate is nonzero.

5. Ars now reduced echelon form is as follows:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

The free variables are χ_2 and χ_4 . The parametric form of the colution set is:

Therefore,
$$Nul(A) = Span \begin{cases} 0 \\ 1 \\ 0 \\ 0 \end{cases} \begin{pmatrix} -1 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$