Q2:

Consider the matrix

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

Fill in the missing entries in the matrix of cofactors of A:

$$\begin{pmatrix} 4 & a & b \\ c & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Recall that the entry in the ith row and jth column of the cofactor matrix is $(-1)^{i+j} \det A_{ij}$.

Solution:

For each value a, b, and c, you want to apply the formula given in the question $(-1)^{i+j}$ is either 1 or -1 depending on the position within the matrix $\det A_{ij}$ is the determinant of the submatrix formed when you eliminate the row and column corresponding to that position (ith row, jth column)

Q3

Suppose that A is a 3×3 matrix, that the cofactor matrix of A is

$$\begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$

and that det(A) = -1. Find the inverse of A.

Solution

In this problem you want to apply the cofactor method of computing an inverse matrix

$$A^{-1} = \frac{1}{\det A} * C^T$$

In the Question, You are given C, the matrix of cofactors, as well as Det(A) C^T is the transpose matrix of C

C:			C^T	C^T			$A^{-1} = \frac{C^{1}}{\det A} = \frac{C^{1}}{-1}$		
-1	1	-1	-1	1	1	1	-1	-1	
1	-1	-1	1	-1	1	-1	1	-1	
1	1	-1	-1	-1	-1	1	1	1	

Q4

Consider the matrix

$$A = \left(egin{matrix} 0 & 1 \ 1 & 0 \end{matrix}
ight)$$

Which of the following vectors is an eigenvector for A? Select all that apply.

Solution:

To check if a vector is an eigenvector, just do the matrix multiplication A*v and if the result is a multiple of the original vector, that vector is an eigenvector

- i. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ not an eigenvector

- ii. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{not an eigenvector}$ iii. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{is an eigenvector with } \lambda = 1$ iv. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \text{is an eigenvector with } \lambda = -1$
- v. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ never an eigenvector, because eigenvectors are not allowed be the zero vector

Lot 1 —	(1	3	. Which of the following are eigenvalues of $oldsymbol{A}$ with a 1-
Let $A =$	$\sqrt{3}$	1)	. Which of the following are eigenvalues of A with a 1-

dimensional eigenspace? Select all that apply.

Solution

The eigenvalues are the roots of the characteristic polynomial $f(\lambda) = \det(A - \lambda I)$

In this case
$$f(\lambda) = (1 - \lambda) * (1 - \lambda) - 3 * 3 = \lambda^2 - 2\lambda - 8$$

Which has roots
$$\lambda = 4, -2$$

This rules out the first two choices of 0 and 2

The question also asks that the eigenvalue has a 1-dimensional eigenspace. The λ -eigenspace is just the null space of $A-\lambda I$, and its dimension is the nullity, or number of non-pivot columns in $A-\lambda I$

$$A - \lambda I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow (Row\ reduction) \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Since there is 1 non-pivot column, the 4-eigenspace is a line.

Q6

Suppose that $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation that reflects about the line y=2x in \mathbb{R}^2 . What are the eigenvalues of the standard matrix for T? Select all that apply.

□ 0		
□ 1		
□ -1		
□ 2		
□ -2		

There are no eigenvalues

Solution:

- The green line is the line y=2x
- The blue vector is an eigenvector with eigenvalue 1, because when it is reflected across the green line, the result is $1*V_1$
- The red vector is an eigenvector with eigenvalue -1, because when it is reflected across the green line, the result is $-1 * V_2$

For those who are color-blind:

Green = L
Blue =
$$V_1$$

Red = V_2

