10/12/2020 Quiz: Quiz 6

Quiz 6

(I) This is a preview of the published version of the quiz

Started: Oct 12 at 5:31pm

Quiz Instructions

Once you open this quiz, you will have 25 minutes to submit it. You will have only **one** submission attempt. The quiz must be **submitted** by 7:59 PM (Atlanta time) on Friday, Oct 9. There are 5 questions after the honor code pledge.

Question 1 0 pts

Please read and attest to the honor statement below:

I understand that this assessment is open-book and open-note, but not open-internet. I may use my class notes, my instructor's notes, and the ILA textbook at https://textbooks.math.gatech.edu/ila/ila.pdf.

(https://textbooks.math.gatech.edu/ila/ila.pdf).

However, I will not visit any other websites, use any search engines, or use any calculators or computer aids whatsoever (Matlab, Mathematica, Chegg.com, Geogebra, etc.) as I take this assessment.

This assessment is completely my own work. I will not discuss the answers or any of the contents of this assessment with anyone until the time it is due.

 I attest to my integrity, and I understand that any suspected violation of this policy may be prosecuted to the fullest extent allowable by Georgia Tech.

Question 2 1 pts

Determine whether each statement is True or False.

Every linear transformation $T:\mathbb{R}^{10} \to \mathbb{R}^1$ is onto.

If a linear transformation $T:\mathbb{R}^4 \to \mathbb{R}^4$ is onto, then it must also be one-to-one.

[Select]

Question 3

1 pts

Let
$$e_1=egin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $e_2=egin{pmatrix}0\\1\\0\end{pmatrix}$, $e_3=egin{pmatrix}0\\0\\1\end{pmatrix}$ be the standard basis of \mathbb{R}^3 , and

suppose $T:\mathbb{R}^3 o \mathbb{R}^3$ is a linear transformation satisfying

$$T(e_1)=e_2+e_3,\ T(e_2)=e_1+e_3,\ T(e_3)=e_1.$$

What is the standard matrix of T?

- $\begin{pmatrix}
 1 & 1 & 0 \\
 1 & 0 & 1 \\
 0 & 1 & 1
 \end{pmatrix}$
- $\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}$
- $\begin{pmatrix}
 0 & 1 & 1 \\
 1 & 0 & 0 \\
 1 & 1 & 0
 \end{pmatrix}$
- $\begin{array}{cccc}
 & 0 & 1 & 1 \\
 & 1 & 0 & 1 \\
 & 1 & 0 & 0
 \end{array}$

10/12/2020 Quiz: Quiz 6

 ○ No ○ It is not possible to determine from the given information if T is one-to-one 	
○ It is not possible to determine from the given information if T is one-to-one	
Question 5	1 pts
Suppose that $T:\mathbb{R}^2 o\mathbb{R}^3$ is a linear transformation and that the raine. Which of the following can we conclude about T ? Select all that	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$oxedsymbol{oxed}$ $oxedsymbol{T}$ is onto	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$oxedsymbol{oxed}$ $oxedsymbol{T}$ is not onto	
Question 6	1 pts

10/12/2020	Quiz: Quiz 6

Not saved	Submit Quiz