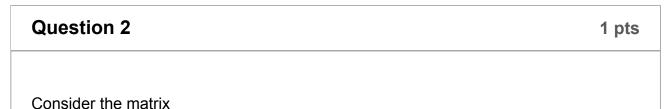
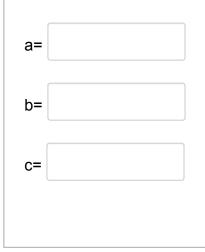

Quiz 8


(1) This is a preview of the published version of the quiz

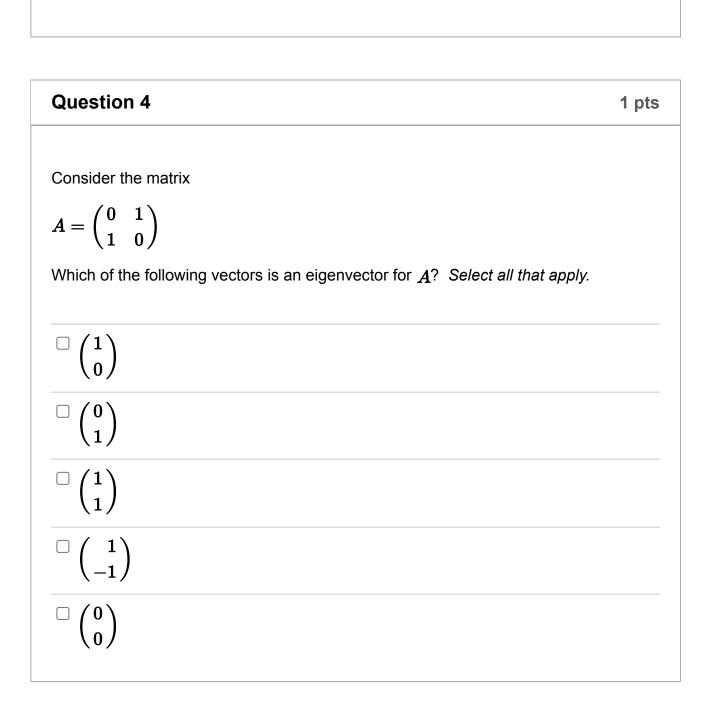
Started: Nov 2 at 12:39pm

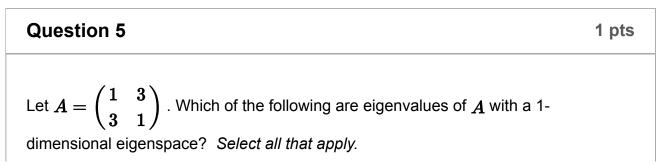
Quiz Instructions

Once you open this quiz, you will have 25 minutes to submit it. You will have only **one** submission attempt. The quiz must be **submitted** by 7:59 PM (Atlanta time) on Friday, Oct 30. There are 5 questions after the honor code pledge.



$$A=egin{pmatrix} 0 & 1 & -1\ -1 & 2 & 0\ 0 & 1 & 2 \end{pmatrix}$$


Fill in the missing entries in the matrix of cofactors of *A*:


$$egin{pmatrix} 4 & a & b \ c & 0 & 0 \ 2 & -1 & 1 \end{pmatrix}$$

Recall that the entry in the ith row and jth column of the cofactor matrix is $(-1)^{i+j} \det A_{ij}$.

Question 3	1 pts
Suppose that A is a 3×3 matrix, that the cofactor matrix of A is $\begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$	
and that $\det(A) = -1$. Find the inverse of A .	

11/2/2020

□ 0	
2	
☐ 4	

Question 6 1 pts	\$
Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that reflects about the line $y = 2x$ in \mathbb{R}^2 . What are the eigenvalues of the standard matrix for T ? Select all that apply.	t
□ 0	_
□ −1	
□ 2	_
□ −2	-
There are no eigenvalues	

Not saved	Submit Quiz