Math 1553

Section M (M01-M04) Georgia Tech Fall 2020 Dan Margalit

Me

About Me

DOB 03/06/1976 Sex M Eyes HAZ Hgt 5'-10″ Wgt 150 lb Donor ♥

I like...

Cake

- Cake
 - Chocolate

- Cake
 - Chocolate
 - Double Chocolate

- Cake
 - Chocolate
 - Double Chocolate
 - Death by Chocolate

Even More About Me

The class

This class will be online.

This class will be online. And it will be **AWESOME**

Textbook

Textbook

Interactive Linear Algebra

Dan Margalit & Joe Rabinoff

The textbook is free and online.

Lay & MyMathLab are resources you can buy. I will not use them.

\rightarrow G	Not See	cure gat	ech.instructure.com/courses/	145274			🖈 🕈 🎯 :
pps 🍃	🕻 Canvas 🛛 🔞 Calen	dar 🗹 T	oodledo 🧾 MSN 🚱 AGT	🐉 Local ILA 🏾 🏮 Beginner's Tutoria 👋 B	Easy Chocolate C		Other Bookmarks
	MATH-1	L553-M					
	Fall 2020		Intro to Linear	Algebra - MATH-155	53-M	Course Status	
nt	Home			0	Sedit :	\bigcirc Unpublish	Published
rd	Announcement	s Ø					
	Assignments		Instructor				tingContent
S	Grades		Instructor		Import from	n Commons	
	People		Professor	Dan Margalit ₽		Choose Home Page	
ar	GaTech Roster		Office hours	TBA, and by appointment		🖬 View Cours	e Stream
	Pages		Tooching Accisto			(?) Course Setu	up Checklist
	Quizzes	Ø	Teaching Assista				• •
)c	Piazza		Studio time	 F 3:30 - 4:20 M01: TA1_Studio 		W New Annou	Incement
5	Office 365		Studios TA Office Hours	 M01: TA1, <u>Studio</u> M02: TA2, <u>Studio</u> M03: TA3, <u>Studio</u> M04: TA4, <u>Studio</u> TA1, <u>Day Time</u> 		6∂ Student Vie	W
<i>:)</i> elp	BlueJeans					圙 New Analyt	ics
	Cisco Webex					ب View Cours	e Notifications
	LockDown Browser			• TA2, <u>Day Time</u>			
	GradePub			 TA3, <u>Day Time</u> TA4, Day Time 		Coming Up	3 View Calendar
	Course Type		Tauthaali	·····, <u></u> , -····-		Nothing for the next	Week

\leftrightarrow \rightarrow C \triangle (i) Not Secu	re gatech.instructure.com/course	s/145274		🖈 🗭 E
👯 Apps 🏂 Canvas 🚦 Calenda	ır 🖌 Toodledo <u>JB</u> MSN 🔇 AGT	🍠 Local ILA 🏾 🏚 Beginne	er's Tutoria 😻 Easy Chocolate C	🗎 Other Bookmarks
	Course Calenda	ar and Materials		
	Date Topic	Lecture WeBWorK	Quiz/Exam/Worksheets Remar	k
	M Introduction / Aug Overview 17			
Account	W 1.1 Systems of Aug 19	s		
Dashboard	F Aug Studio: 1.1 21	Warmup	Worksheet (solutions) Supplement (solutions)	
Courses	M 1.2 Row Aug reduction 24			
Calendar	W1.2 (continued)Aug1.3 Parametric26form	, 1.1		
	F Aug Studio: 1.2, 1.3 28		Quiz: 1.1 (solutions) Worksheet (solutions) Supplement (solutions)	
Commons ? Help	M 2.1 and 2.2 Aug Vectors, vector 31 equations, and spans			
	W 2.3 Matrix Sep 2 equations	1.2, 1.3		
	F Sep Studio: 2.1, 2.2 4 2.3		Quiz: 1.2, 1.3 (solutions) Worksheet (solutions) Supplement (solutions)	
	M Labor Day Holid Sep 7	lay, No Class		
\leftarrow	W 2.4 Solution	2.1+2.2, 2.3		

Teams

Microsoft Teams

On Microsoft Teams, you can find the lectures, and class discussion. Please familiarize yourself with both features.

Your first assignment

Mathematical Autobiography

The first assignment is to post a mathematical autobiography on Teams, due Fri.

Include:

- A recognizable photo of you
- Preferred nickname
- Your major
- Anything about you that you'd like to share
- About your relationship with Math

Assessment

Grades!

Grades

Category	Percentage
Homework	20% (2 drops)
Quizzes	30% (1 drop)
Midterms	30%
Final Exam	20%

If 85% of Section M does the CIOS at the end of the semester, one more quiz is dropped. Also, there is an optional writing assignment that can replace another quiz.

90% is an A, etc. Target scores may be moved in your favor.

Exams

Exam	Date
Midterm 1	Sep 18 @ 8 am – 8 pm
Midterm 2	Oct 16 @ 8 am – 8 pm
Midterm 3	Nov 20 @ 8 am – 8 pm
Final Exam	Dec 4 @ 9 am – 9 pm

Notify me ASAP if you have a conflict.

Quizzes

- There are 10 quizzes, on Fridays.
- Lowest quiz grade dropped (possibly two more, as above)
- Typical timing:

	Mon	Tue	Wed	Thu	Fri
Week N	Class		Class HW due on Week N-1 material		Quiz on Week N-1
Week N+1	Class		Class HW due on Week N material		Quiz on Week N

Homework

- WeBWorK
- Generally due on Wed at 11:59 pm
- Normally as many tries as you want, but there are a handful of problems with a limited number of tries. The problem will say.
- One you get told your answer is correct, you are done with that problem.
- Two lowest scores dropped

		webwork.math.gatech.edu	C 1
	WeBWork MATH-1553_SPRING2020	WeBW	/orK : MATH-1553_SPRING2020 +
🖗 WeBWorK	MAA MATHEMATICAL ASSOCIATION OF	AMERICA	Logged in as 902781425. Log Out 🗭
MAIN MENU Courses	webwork / MATH-1553_SPRING2020		
Homework Sets User Settings Grades	MATH-1553_SPRIN		
Classlist Editor	Ho	mework Sets	Course Info Edit
Hmwk Sets Editor	Name	Status	
Library Browser	0.0 Warmup will not be graded	open, due 01/10/2020 at 11:59pm E	EST
Statistics Student Progress	1.1 Linear Systems	will open on 01/06/2020 at 12:00an EST	n
Scoring Tools Email	1.2 Row Reduction	will open on 01/06/2020 at 12:00an EST	n
File Manager Course Configuration	1.3 Parametric Form	will open on 01/13/2020 at 12:00an EST	n
Help 2	2.1-2.2 Vectors and vector equations	will open on 01/20/2020 at 12:00an EST	n
Report bugs	2.3 Matrix Equations	will open on 01/27/2020 at 12:00an EST	n
	2.4 Solution Sets	will open on 01/27/2020 at 12:00an EST	Under Assignments In Canvas.
	2.5 Linear Independence	will open on 01/27/2020 at 12:00an EST	It will work on your
	2.6 Subspaces	will open on 02/03/2020 at 12:00an EST	second attempt.

Optional Writing Assignment

- Find application of linear algebra to some field of study outside of mathematics.
- Write a 1-2 page summary in your own words (500-1000 words, but don't use a word counter)
- Cite all references used
- Can be completed any time.
- You must explain any linear algebra that we have not yet covered in class
- Post on Teams in the Writing Assignment channel
- Replaces your lowest quiz grade

Advice, etc.

Office Hours

- Microsoft Teams
- Times to be announced
- You should come!
- Ok if you don't have questions

Statement of Inclusivity

I will strive to make this class accessible to people of all races, genders (including gender non-conforming individuals), sexual identities, and class backgrounds. While this is a priority for me, I do not claim to know how to best honor this commitment, and so I am very open to feedback from students when it comes to making the course more accessible and inclusive to all identities.

If you need anything, please ask.

Honor Code

• You should abide by the GT honor code at all times.
Some Things that Make Me Happy

- Have your camera on
- Pay attention
- Bring energy
- Ask questions
- Email / online etiquette
- Say hi

Some Things that Make Me Happy

- Have your camera on
- Pay attention
- Bring energy
- Ask questions
- Email / online etiquette
- Say hi

Some Things that Make Me Happy

- Have your camera on
- Pay attention
- Bring energy
- Ask questions
- Email / online etiquette
- Say hi

Asking questions

- Please ask questions!
- Ok if your answers are not correct
- Will answer as many questions as I can

Growth mindset

There is a prevalent belief that you are either "good" or "bad" at math, and if you are "bad" at it, then you will always be bad at it no matter how hard you try. This is false. Mathematics is just like any other discipline or skill: you can improve more and more with practice (think of any hobby you got better at over time).

Linear algebra will be completely new to most of you. You are all starting from the ground floor this semester.

Difficulty of the Course

In-person meeting

November 13, during Studio time. Details to be announced.

Good luck!

Math 1553: Introduction to Linear Algebra Fall 2020, Georgia Tech Dan Margalit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear. Algebra.

What is Linear Algebra?

Linear

Algebra

- from al-jebr (Arabic), meaning reunion of broken parts
- 9^{th} century Abu Ja'far Muhammad ibn Muso al-Khwarizmi

Why a whole course?

Engineers need to solve lots of equations in lots of variables.

$$3x_1 + 4x_2 + 10x_3 + 19x_4 - 2x_5 - 3x_6 = 141$$

$$7x_1 + 2x_2 - 13x_3 - 7x_4 + 21x_5 + 8x_6 = 2567$$

$$-x_1 + 9x_2 + \frac{3}{2}x_3 + x_4 + 14x_5 + 27x_6 = 26$$

$$\frac{1}{2}x_1 + 4x_2 + 10x_3 + 11x_4 + 2x_5 + x_6 = -15$$

Often, it's enough to know some information about the set of solutions without having to solve the equations at all!

In real life, the difficult part is often in recognizing that a problem can be solved using linear algebra in the first place: need *conceptual* understanding.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Linear Algebra in Engineering

Almost every engineering problem, no matter how huge, can be reduced to linear algebra:

$$Ax = b$$
 or
 $Ax = \lambda x$ or

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$Ax \approx x$$

Civil Engineering: How much traffic lies in the four unlabeled segments?

Chemistry: Balancing reaction equations

$$\underline{x} C_2H_6 + \underline{y} O_2 \rightarrow \underline{z} CO_2 + \underline{w} H_2O_2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Biology: In a population of rabbits...

- half of the new born rabbits survive their first year
- of those, half survive their second year
- the maximum life span is three years
- rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population in 2016 (in terms of the number of first, second, and third year rabbits), then what is the population in 2017?

Say the numbers of first, second, and third year rabbits in year n are:

 F_n, S_n, T_n

- ロ ト - 4 回 ト - 4 □

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Age 0-1

Age 1-2 Age 2-3

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Danata					Advanc	e 1 year	
Rando	omize starting	population		1.0			
Age 0-1	30406	٢		1.692			
Age 1-2	8295	٢					Age 0-1 Age 1-2
Age 2-3	1768	٥					Age 2-3

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Rando	omize starting population
Age 0-1	501006
Age 1-2	126275
Age 2-3	31098

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ Demo

Geometry and Astronomy: Find the equation of a circle passing through 3 given points, say (1,0), (0,1), and (1,1). The general form of a circle is $a(x^2 + y^2) + bx + cy + d = 0 \rightsquigarrow$ system of linear equations.

Very similar to: compute the orbit of a planet: $a(x^2 + y^2) + bx + cy + d = 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Google: "The 25 billion dollar eigenvector." Each web page has some importance, which it shares via outgoing links to other pages \rightsquigarrow system of linear equations. Stay tuned!

Overview of the course

• Solve the matrix equation Ax = b

Overview of the course

- Solve the matrix equation Ax = b
 - Solve systems of linear equations using matrices and row reduction, and inverses

Overview of the course

- Solve the matrix equation Ax = b
 - Solve systems of linear equations using matrices and row reduction, and inverses
 - Solve systems of linear equations with varying parameters using parametric forms for solutions, the geometry of linear transformations, the characterizations of invertible matrices, and determinants

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Solve the matrix equation $Ax = \lambda x$
Overview of the course

- Solve the matrix equation Ax = b
 - Solve systems of linear equations using matrices and row reduction, and inverses
 - Solve systems of linear equations with varying parameters using parametric forms for solutions, the geometry of linear transformations, the characterizations of invertible matrices, and determinants
- Solve the matrix equation $Ax = \lambda x$
 - Solve eigenvalue problems through the use of the characteristic polynomial

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview of the course

- Solve the matrix equation Ax = b
 - Solve systems of linear equations using matrices and row reduction, and inverses
 - Solve systems of linear equations with varying parameters using parametric forms for solutions, the geometry of linear transformations, the characterizations of invertible matrices, and determinants
- Solve the matrix equation $Ax = \lambda x$
 - Solve eigenvalue problems through the use of the characteristic polynomial
 - Understand the dynamics of a linear transformation via the computation of eigenvalues, eigenvectors, and diagonalization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Almost solve the equation Ax = b

Overview of the course

- Solve the matrix equation Ax = b
 - Solve systems of linear equations using matrices and row reduction, and inverses
 - Solve systems of linear equations with varying parameters using parametric forms for solutions, the geometry of linear transformations, the characterizations of invertible matrices, and determinants
- Solve the matrix equation $Ax = \lambda x$
 - Solve eigenvalue problems through the use of the characteristic polynomial
 - Understand the dynamics of a linear transformation via the computation of eigenvalues, eigenvectors, and diagonalization
- Almost solve the equation Ax = b
 - Find best-fit solutions to systems of linear equations that have no actual solution using least squares approximations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●