Announcements Nov 11

- Please turn on your camera if you are able and comfortable doing so
- WeBWorK on 5.4, 5.5 due Thursday night
- Quiz on Sections 5.4, 5.5 Friday 8 am 8 pm EDT
- Third Midterm Friday Nov 20 8 am 8 pm on §4.1-5.6
- Writing assignment due Nov 24 (make sure to read the emails I sent)
- Office hours this week Tuesday 4-5, Thursday 1-2, and by appointment
- TA Office Hours
 - Umar Fri 4:20-5:20
 - Seokbin Wed 10:30-11:30
 - Manuel Mon 5-6
 - Pu-ting Thu 3-4
 - Juntao Thu 3-4
- Studio on Friday
- Tutoring: http://tutoring.gatech.edu/tutoring
- PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- Counseling center: https://counseling.gatech.edu

Note: Part of 5.5 got cut

Dynamics

Block diag.

Chapter 6

Orthogonality

Section 6.1

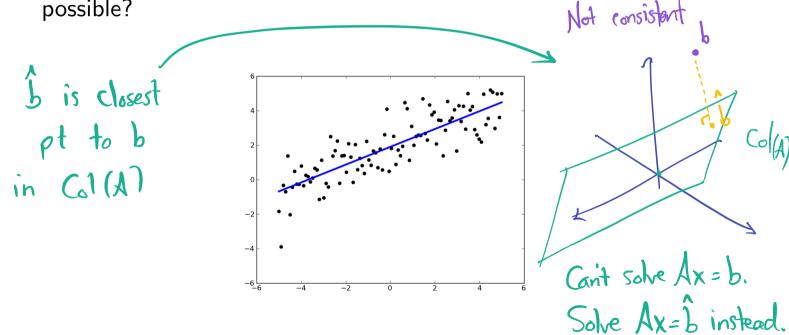
Dot products and Orthogonality

Where are we?

We have learned to solve Ax = b and $Av = \lambda v$.

We have one more main goal.

What if we can't solve Ax = b? How can we solve it as closely as possible?



The answer relies on orthogonality.

Outline

- Dot products
- Length and distance
- Orthogonality

Dot product

Say $u=(u_1,\ldots,u_n)$ and $v=(v_1,\ldots,v_n)$ are vectors in \mathbb{R}^n

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$
$$= u_1 v_1 + \dots + u_n v_n$$
$$= u^T v$$

Example. Find
$$(1,2,3) \cdot (4,5,6)$$
. = $(1 \ 2 \ 3)$ $\begin{pmatrix} 4 \ 5 \ 6 \end{pmatrix}$ = $1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6$

Dot product

Some properties of the dot product

- $u \cdot v = v \cdot u$
- $\bullet \ (u+v) \cdot w = u \cdot w + v \cdot w$
- $(cu) \cdot v = c(u \cdot v)$
- $u \cdot u \ge 0$
- $u \cdot u = 0 \Leftrightarrow u = 0$

$$u \cdot u : u_1^2 + u_2^2 + \dots + u_n^2$$

Length

Let v be a vector in \mathbb{R}^n

$$||v|| = \sqrt{v \cdot v}$$
 $||v||^2 = \sqrt{v}$

$$= \text{length of } v$$

Why? Pythagorean Theorem

$$\|\binom{1}{2}\| = \sqrt{|^2+2^2+3^2} = \sqrt{14}$$

Fact.
$$\|cv\| = |c| \cdot \|v\|$$
 scalar

v is a unit vector of ||v|| = 1

Problem. Find the unit vector in the direction of (1, 2, 3, 4).

Problem. Find the unit vector in the direction of
$$(1, 2, 3, 4)$$
.

answer = $\frac{1}{\|v\|} = \frac{1}{\sqrt{1^2+2^1+3^1+4^2}} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \frac{1}{\sqrt{30}} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \frac{1}{\sqrt{30}} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$

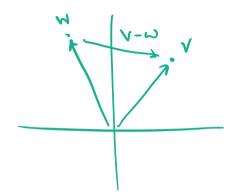
Also

Also

Also

Distance

The distance between v and w is the length of v-w (or w-v!).



Problem. Find the distance between (1,1,1) and (1,4,-3).

$$\left\| \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 0 \\ -3 \\ 4 \end{pmatrix} \right\| = \sqrt{5^2 + 3^2 + 4^2}$$

$$= \sqrt{25} = 5$$

Orthogonality

Fact.
$$u \perp v \Leftrightarrow u \cdot v = 0$$

I means orthogonal/perpendicular

Why? Pythagorean theorem again!

Problem. Find a vector in \mathbb{R}^3 orthogonal to (1,2,3).

$$\begin{pmatrix} -13 \\ 2 \\ 3 \end{pmatrix} \perp \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{Since} \quad \begin{pmatrix} -13 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 7 \\ 3 \end{pmatrix} =$$

-13+4+9=0.

Summary of Section 6.1

- $u \cdot v = \sum u_i v_i$
- $u \cdot u = ||u||^2$ (length of u squared)
- The unit vector in the direction of v is v/||v||.
- The distance from u to v is ||u-v||
- $u \cdot v = 0 \Leftrightarrow u \perp v$

Section 6.2

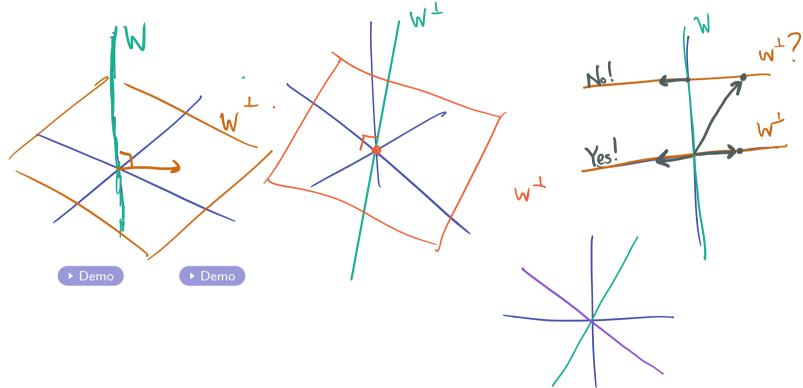
Orthogonal complements

Outline of Section 6.2

- Orthogonal complements
- Computing orthogonal complements

$$W = \text{subspace of } \mathbb{R}^n = \text{plane thru } \mathbb{O} \cdot W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W\}$$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ?

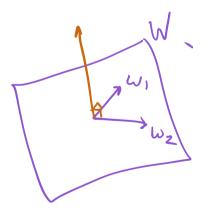


$$W = \text{subspace of } \mathbb{R}^n$$

$$W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$$

Facts.

- 1. W^{\perp} is a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. $\dim W + \dim W^{\perp} = n$
- 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
- 5. The intersection of W and W^{\perp} is $\{0\}$.



W.M = 0 ~ cm.M = 0

U.W=0 & V.W=0 ~ (U+Y). W= ().

Finding them

Problem. Let $W = \operatorname{Span}\{(1,1,-1)\}$. Find the equation of the plane W^{\perp} .

What equation(s) are we solving?

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 in W^{\perp} means: $(1 \ 1 \ -1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$.

$$X = -4 + \xi$$

$$Y = \begin{pmatrix} -1 \\ 1 \\ 6 \end{pmatrix} + \xi \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{cases} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$

$$\begin{cases} \begin{cases} -1 \\ 1 \\ 0 \end{cases}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$

x +y - = 0.

Finding them

Problem. Let $W = \mathrm{Span}\{(1,1,-1),(-1,2,1)\}$. Find a system of equations describing the line W^{\perp} .

Find a basis for
$$W^{\perp}$$
.

$$\begin{pmatrix} x \\ y \\ t \end{pmatrix} \text{ in } W^{\perp} \text{ means}: \quad (1 \mid 1 - 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} x + y - t = 0 \\ -x + 2y + t = 0 \end{pmatrix} \quad \begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

$$\begin{pmatrix} (-1 \mid 2 \mid 1) \cdot \begin{pmatrix} x \\ y \\ t$$

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

$$\begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ 4 \\ 7 \end{pmatrix} = 0$$

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^{\perp} .

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

row space is W Theorem. $A = m \times n$ matrix $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \qquad \qquad \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \\ 7 \end{pmatrix} = 0$

Geometry \leftrightarrow Algebra

(The row space of A is the span of the rows of A.)

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^{\perp}}$$

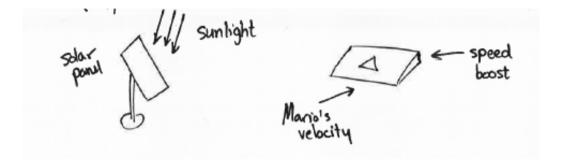
where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Why? Say that $w_1 + w_1' = w_2 + w_2'$ where w_1 and w_2 are in W and w_1' and w_2' are in W^{\perp} . Then $w_1 - w_2 = w_2' - w_1'$. But the former is in W and the latter is in W^{\perp} , so they must both be equal to 0.

Next time: Find v_W and $v_{W^{\perp}}$.

Orthogonal Projections

Many applications, including:



Summary of Section 6.2

- $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$
- Facts:
 - 1. W^{\perp} is a subspace of \mathbb{R}^n
 - 2. $(W^{\perp})^{\perp} = W$
 - 3. $\dim W + \dim W^{\perp} = n$
 - 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
 - 5. The intersection of W and W^{\perp} is $\{0\}$.
- To find W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find the null space.
- \bullet Every vector v can be written uniquely as $v=v_W+v_{W^\perp}$ with v_W in W and v_{W^\perp} in W^\perp

Typical Exam Questions 6.2

- What is the dimension of W^{\perp} if W is a line in \mathbb{R}^{10} ?
- What is W^{\perp} if W is the line y = mx in \mathbb{R}^2 ?
- If W is the x-axis in \mathbb{R}^2 , and $v=\left(\begin{smallmatrix}7\\-3\end{smallmatrix}\right)$, write v as $v_W+v_{W^\perp}$.
- If W is the line y=x in \mathbb{R}^2 , and $v=\left(\begin{smallmatrix}7\\-3\end{smallmatrix}\right)$, write v as $v_W+v_{W^\perp}$.
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ in \mathbb{R}^3 .
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ in \mathbb{R}^4 .
- What is the orthogonal complement of x_1x_2 -plane in \mathbb{R}^4 ?