Announcements Nov 23

- Please turn on your camera if you are able and comfortable doing so
- Do the CIOS!
- WeBWorKs 6.2, 6.2, and 6.5 not graded
- Writing assignment due Nov 24 (make sure to read the emails I sent)
- Final Exam Friday Dec 4 9 am Mpm (cumulative)
- Review Sessions tba midnight
- Office hrs Tue 11-12, Mon 3:30-4:20, Tue 11-12, Wed 3:30-4:20, Thu 1-2
- TA Office Hours
 - Umar Fri 4:20-5:20
 - Seokbin Wed 10:30-11:30
 - Manuel Mon 5-6
 - Pu-ting Thu 3-4
 - Juntao Thu 3-4
- Tutoring: http://tutoring.gatech.edu/tutoring
- PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- Counseling center: https://counseling.gatech.edu

Section 6.5 Least Squares Problems

Least Squares problems

What if we can't solve Ax = b? How can we solve it as closely as possible?

To solve Ax = b as closely as possible, we orthogonally project b onto Col(A); call the result \hat{b} . Then solve $Ax = \hat{b}$. This is the *least squares solution* to Ax = b.

Outline of Section 6.5

- The method of least squares
- Application to best fit lines/planes

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Application to best fit curves

 $A = m \times n$ matrix.

A least squares solution to Ax = b is an \hat{x} in \mathbb{R}^n so that $A\hat{x}$ is as close as possible to b.

A least squares solution to Ax = b is an \hat{x} in \mathbb{R}^n so that $A\hat{x}$ is as close as possible to b.

The error is $||A\hat{x} - b||$.

Theorem. The least squares solutions to Ax = b are the solutions to

$$(A^T A)x = (A^T b)$$

So this is just like what we did before when we were finding the projection of b onto Col(A). But now we just solve and don't (necessarily) multiply the solution by A.

Example

Theorem. The least squares solutions to Ax = b are the solutions to

$$(A^T A)x = (A^T b)$$

Find the least squares solutions to Ax = b for this A and b:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is the error?

||u-v||=||v-u|| Least squares solutions Example

Formula:
$$(A^T A)x = (A^T b)$$

Find the

This is the set solutions
$$\| \mathbf{W} - \mathbf{Y} \| \leq \| \mathbf{V} - \mathbf{U} \|$$

$$(A^{T} A) x = (A^{T} b)$$

$$(A^{T} A) x = (A^{T} b)$$

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

$$A^{T} A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ -1 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \end{pmatrix} \|$$

$$So \text{ error } iS$$

$$\|$$

(ロ) (同) (E) (E) (E) 590

Theorem. Let A be an $m \times n$ matrix. The following are equivalent:

- 1. Ax = b has a unique least squares solution for all b in \mathbb{R}^n
- 2. The columns of A are linearly independent
- 3. $A^T A$ is invertible

In this case the least squares solution is $(A^T A)^{-1} (A^T b)$.

Recall from Sec 6.3

$$\hat{b} = A(A^{+}A^{-1})A^{+}b$$

 $= A\hat{x}$

Application

Best fit lines

Best fit lines

Poll

What does the best fit line minimize?

- the sum of the squares of the distances
 from the data points to the line
 - the sum of the squares of the vertical distances from the data points to the line
- 3. the sum of the squares of the horizontal distances from the data points to the line
- 4. the maximal distance from the data points to the line

Least Squares Problems

More applications

Determine the least squares problem Ax = b to find the best parabola $y = Cx^2 + Dx + E$ for the points: general egn (0,0), (2,0), (3,0), (0,1) $0 = C \cdot 0^2 + D \cdot 0 + E$ $0 = C \cdot 2^2 + D \cdot 2 + E$ Plug in: $0 = C \cdot 3^2 + D \cdot 3 + F$ 1 = CO + D.0 + E $A = \begin{pmatrix} 0 & 0 & | \\ 4 & 2 & | \\ 9 & 3 & | \\ 0 & 0 & - \end{pmatrix} \quad b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ | \\ 1 \end{pmatrix}$ ▶ Demo Solve ATAX=ATb ~ 3 numbers.

Least Squares Problems

More applications

Determine the least squares problem Ax = b to find the best fit ellipse $Cx^2 + Dxy + Ey^2 + Fx + Gy + H = 0$ for the points: General form: (0,0), (2,0), (3,0), (0,1)Plug in (0,0) : H = 1

Plug in
$$(0,0)$$
: $H = 1$
 $(2,0)$ $C \cdot 4 + F \cdot 2 + M = 1$
 $(3,6)$ $C \cdot 9 \cdot F \cdot 3 + H = 1$
 $(6,1)$ $E \cdot 1 + G \cdot 1 + M = 1$

Gauss invented the method of least squares to predict the orbit of the asteroid Ceres as it passed behind the sun in 1801.

Least Squares Problems

Best fit plane

Determine the least squares problem Ax = b to find the best fit linear function f(x, y) = Cx + Dy + E

	x	y	f(x,y)
-	1	0	0
	0	1	1
	-1	0	3
	0	-1	4

Summary of Section 6.5

- A least squares solution to Ax = b is an \hat{x} in \mathbb{R}^n so that $A\hat{x}$ is as close as possible to b.
- The error is $||A\hat{x} b||$.
- The least squares solutions to Ax = b are the solutions to $(A^TA)x = (A^Tb)$.
- To find a best fit line/parabola/etc. write the general form of the line/parabola/etc. with unknown coefficients and plug in the given points to get a system of linear equations in the unknown coefficients.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Typical Exam Questions 6.5

- Find the best fit line through (1,0), (2,1), and (3,1). What is the error?
- Find the best fit parabola through (1,0), (2,1), (3,1), and (3,0). What is the error?
- True/false. For every set of three points in \mathbb{R}^2 there is a unique best fit line.
- True/false. If x̂ is the least squares solution to Ax = b for an m×n matrix A, then x̂ is the closest point in Rⁿ to b.

• True/false. If \hat{x} and \hat{y} are both least squares solutions to Ax = b then $\hat{x} - \hat{y}$ is in the null space of A.