Announcements Sep 21

- WeBWorK on Section 2.6 due Thursday night
- Second Midterm Friday OCt 16 8 am 8 pm on $\S2.6-3.6$ (not $\S2.8$)
- My office hours Tue 11-12, Thu 1-2, and by appointment
- TA Office Hours
 - Umar Fri 4:20-5:20
 - Seokbin Wed 10:30-11:30
 - Manuel Mon 5-6
 - Pu-ting Thu 3-4
 - Juntao Thu 3-4
- Regular studio on Friday
- Tutoring: http://tutoring.gatech.edu/tutoring
- PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- For general questions, post on Piazza
- Find a group to work with let me know if you need help
- Counseling center: https://counseling.gatech.edu

Quizta on 26

Chapter 2 System of Linear Equations: Geometry

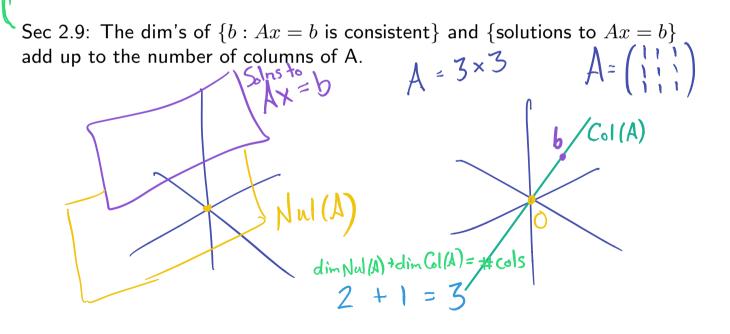
<□> <□> <□> <□> <=> <=> <=> <=> <<

Where are we?

In Chapter 1 we learned to solve any system of linear equations in any number of variables. The answer is row reduction, which gives an algebraic solution. In Chapter 2 we put some geometry behind the algebra. It is the geometry that gives us intuition and deeper meaning. There are three main points:

Sec 2.3: Ax = b is consistent $\Leftrightarrow b$ is in the span of the columns of A.

Sec 2.4: The solutions to Ax = b are parallel to the solutions to Ax = 0.



Section 2.6

Subspaces

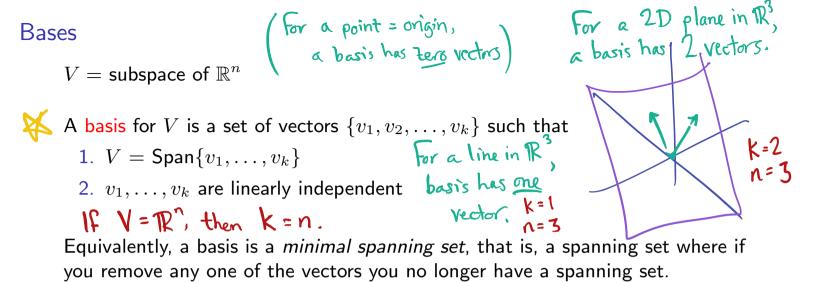
Section 2.6 Summary

- A subspace of \mathbb{R}^n is a subset V with:
 - 1. The zero vector is in V.
 - 2. If u and v are in V, then u + v is also in V.
 - 3. If u is in V and c is in \mathbb{R} , then $cu \in V$.
- Two important subspaces: Nul(A) and Col(A)
- A subset V of IRⁿ is a subspace if: when we take any lincombo if vectors in V, we get another vector in V. • Find a spanning set for Nul(A) by solving Ax = 0 in vector parametric form
- Find a spanning set for Col(A) by taking pivot columns of A (not reduced A)

Feer things are the same subspaces, spans, planes through 0, null spaces Five column spaces.

Section 2.7

Bases



$$\swarrow$$
 $\dim(V) =$ dimension of $V = k =$ the number of vectors in the basis

(What is the problem with this definition of dimension?)
Need to know all bases have same # of vectors.
But it's two.
Q. What is one basis for
$$\mathbb{R}^2$$
? \mathbb{R}^n ? How many bases are there?
 $\binom{1}{0}, \binom{1}{5}$ $\binom{1}{0}, \binom{0}{1}$ $\binom{1}{0}, \binom{0}{1}$ $\binom{1}{0}, \binom{0}{1}$ $\binom{1}{0}, \binom{0}{1}$ $\binom{1}{0}, \binom{1}{0}$ $\binom{1}{0}$ $\binom{1}{0}, \binom{1}{0}$ $\binom{1}{0}$ \binom

Basis example

Find a basis for the xy-plane in \mathbb{R}^3 ? Find all bases for the xy-plane in \mathbb{R}^3 . (Remember: a basis is a set of vectors in the subspace that span the subspace and are linearly independent.)

$$\begin{cases} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{cases}$$

all of them:
$$\begin{cases} \begin{pmatrix} * \\ * \\ 0 \end{pmatrix}, \begin{pmatrix} * \\ * \\ 0 \end{pmatrix}, \begin{pmatrix} * \\ * \\ 0 \end{pmatrix} \end{cases}$$

not
co-linear
multiples.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bases for \mathbb{R}^n

What are all bases for \mathbb{R}^n ? $\int_{\infty} \sqrt{-\mathcal{R}^n}$

Take a set of vectors $\{v_1, \ldots, v_k\}$. Make them the columns of a matrix.

For the vectors to be linearly independent we need a pivot in every column. For the vectors to span \mathbb{R}^n we need a pivot in every row. Conclusion: (k = n) and the matrix has n pivots. $ls \quad \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \\ 12 \end{pmatrix} \right\} a \quad basis \quad fur$ No! Too many vectors. $|s \left\{\binom{1}{2}, \binom{4}{5}, \binom{7}{8}\right\} \approx \text{basis for } \mathbb{R}^3? \text{Ravreduce} \sim \left(\begin{smallmatrix} \Box & \circ & \circ \\ \circ & \bullet & \circ \\ \circ & \circ & \circ \\ \text{No! Only 2 pivots.} \end{aligned}$

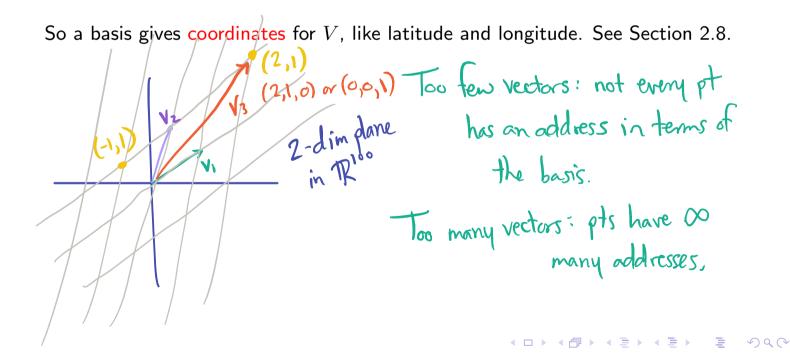
 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Who cares about bases

A basis $\{v_1, \ldots, v_k\}$ for a subspace V of \mathbb{R}^n is useful because:

Every vector v in V can be written in exactly one way:

 $v = c_1 v_1 + \dots + c_k v_k$



Find bases for Nul(A) and Col(A)

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find bases for Nul(A) and Col(A)

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$N(ul(A) : \longrightarrow \begin{pmatrix} 1 & 11 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} x = -y - z \\ y = y \\ z = \overline{z} \end{pmatrix} \longrightarrow \begin{cases} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$
plane in \mathbb{R}^{2}

$$Col(A) : \longrightarrow \begin{pmatrix} \prod_{0 \neq 0}^{1 + 1} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad So \text{ take first} \longrightarrow \begin{cases} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \\ col \text{ of } A \end{cases}$$
(ine in \mathbb{R}^{2}

Find bases for Nul(A) and Col(A)

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$Nul(A) \longrightarrow \text{vect. param} \text{ take those vectors.}$$

$$form,$$

$$Col(A) \longrightarrow \begin{cases} \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} \end{cases}$$

In general:

• our usual parametric solution for Ax = 0 gives a basis for Nul(A)

the pivot columns of A form a basis for $\operatorname{Col}(A)$

Warning! Not the pivot columns of the reduced matrix.

Column space \mathbb{N} What should you do if you are asked to find a basis for Span $\{v_1,\ldots,v_k\}$?

Mate a matrix with cols V1,..., Vk. do this

Bases for planes

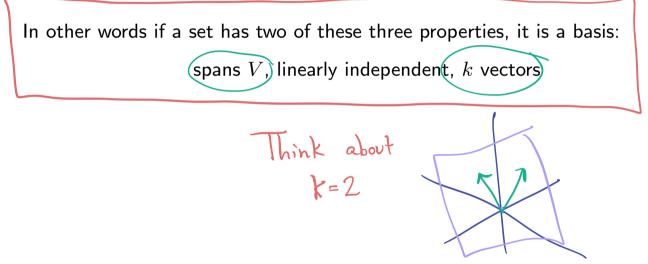
Find a basis for the plane 2x + 3y + z = 0 in \mathbb{R}^3 .

Basis theorem

Basis Theorem

If V is a k-dimensional subspace of \mathbb{R}^n , then

- any k linearly independent vectors of \boldsymbol{V} form a basis for \boldsymbol{V}
- any k vectors that span V form a basis for V



We are skipping Section 2.8 this semester. But remember: the whole point of a basis is that it gives coordinates (like latitude and longitude) for a subspace. Every point has a unique address.

Section 2.7 Summary

- A basis for a subspace V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that
 - 1. $V = \operatorname{Span}\{v_1, \ldots, v_k\}$
 - 2. v_1, \ldots, v_k are linearly independent
- The number of vectors in a basis for a subspace is the dimension.
- Find a basis for Nul(A) by solving Ax = 0 in vector parametric form
- Find a basis for Col(A) by taking pivot columns of A (not reduced A)
- Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n . Then

- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.

Typical exam questions

- Find a basis for the yz-plane in \mathbb{R}^3
- Find a basis for \mathbb{R}^3 where no vector has a zero
- How many vectors are there in a basis for a line in R^7 ?
- True/false: every basis for a plane in \mathbb{R}^3 has exactly two vectors.
- True/false: if two vectors lie in a plane through the origin in \mathbb{R}^3 and they are not collinear then they form a basis for the plane.
- True/false: The dimension of the null space of A is the number of pivots of A.
- True/false: If b lies in the column space of A, and the columns of A are linearly independent, then Ax = b has infinitely many solutions.
- True/false: Any three vectors that span R^3 must be linearly independent.

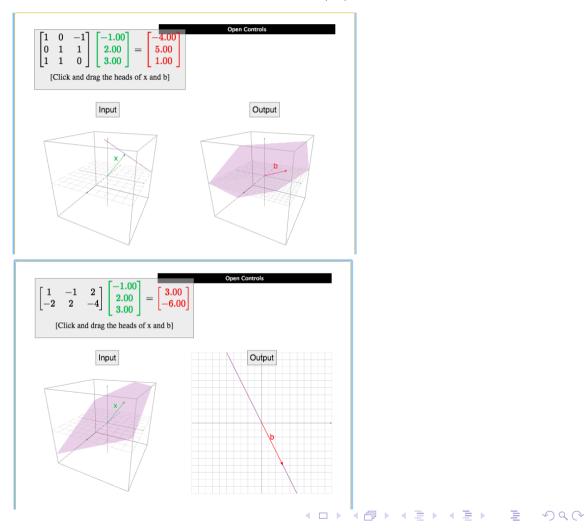
< ロ > < 同 > < E > < E > E の < C</p>

Section 2.9

The rank theorem

Rank Theorem

On the left are solutions to Ax = 0, on the right is Col(A):



Rank Theorem

 $\operatorname{rank}(A) = \operatorname{dim} \operatorname{Col}(A) = \#$ pivot columns $\operatorname{nullity}(A) = \operatorname{dim} \operatorname{Nul}(A) = \#$ nonpivot columns

Rank Theorem. rank(A) + nullity(A) = #cols(A)

This ties together everything in the whole chapter: rank A describes the b's so that Ax = b is consistent and the nullity describes the solutions to Ax = 0. So more flexibility with b means less flexibility with x, and vice versa.

Example.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ ○ ○

Typical exam questions

- Suppose that A is a 5×7 matrix, and that the column space of A is a line in \mathbb{R}^5 . Describe the set of solutions to Ax = 0.
- Suppose that A is a 5 × 7 matrix, and that the column space of A is ℝ⁵. Describe the set of solutions to Ax = 0.
- Suppose that A is a 5×7 matrix, and that the null space is a plane. Is Ax = b consistent, where b = (1, 2, 3, 4, 5)?
- True/false. There is a 3×2 matrix so that the column space and the null space are both lines.
- True/false. There is a 2×3 matrix so that the column space and the null space are both lines.
- True/false. Suppose that A is a 6×2 matrix and that the column space of A is 2-dimensional. Is it possible for (1,0) and (1,1) to be solutions to Ax = b for some b in \mathbb{R}^6 ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Section 2.9 Summary

• Rank Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$