Announcements Sep 23

- *•* WeBWorK on Section 2.6 due Thursday night
- *•* Quiz on Section 2.6 Friday 8 am 8 pm EDT
- My Office Hours Tue 11-12, Thu 1-2, and by appointment
- TA Office Hours
	- \blacktriangleright Umar Fri 4:20-5:20
	- \blacktriangleright Seokhin Wed 10:30-11:30
	- \blacktriangleright Manuel Mon 5-6
	- \blacktriangleright Pu-ting Thu 3-4
	- \blacktriangleright Juntao Thu 3-4
- *•* Regular Studio on Friday
- *•* Second Midterm Friday Oct 16 8 am 8 pm on *§*2.6-3.6 (not *§*2.8)
- *•* Tutoring: http://tutoring.gatech.edu/tutoring
- *•* PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- *•* Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- *•* For general questions, post on Piazza
- *•* Find a group to work with let me know if you need help
- *•* Counseling center: https://counseling.gatech.edu

Section 2.7

Bases

Kロト K団 K K ミト K ミト 「ミ」 のQ CK

Bases

 $V =$ subspace of \mathbb{R}^n

A basis for *V* is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

- 1. $V = \textsf{Span}\{v_1, \ldots, v_k\}$
- 2. *v*1*,...,v^k* are linearly independent

Equivalently, a basis is a *minimal spanning set*, that is, a spanning set where if you remove any one of the vectors you no longer have a spanning set.

Q. What is one basis for \mathbb{R}^2 ? \mathbb{R}^n ? How many bases are there?

Dimension

 $V =$ subspace of \mathbb{R}^n

 $dim(V) =$ dimension of $V = k =$ the number of vectors in the basis

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

(What is the problem with this definition of dimension?)

Basis theorem

Basis Theorem

If V is a *k*-dimensional subspace of \mathbb{R}^n , then

- *•* any *k* linearly independent vectors of *V* form a basis for *V*
- *•* any *k* vectors that span *V* form a basis for *V*

In other words if a set has two of these three properties, it is a basis:

spans *V* , linearly independent, *k* vectors

We are skipping Section 2.8 this semester. But remember: the whole point of a basis is that it gives coordinates (like latitude and longitude) for a subspace. Every point has a unique address.

Section 2.9

The rank theorem

Rank Theorem

On the left are solutions to $Ax = 0$, on the right is $Col(A)$:

Rank Theorem

 $rank(A) = dim Col(A) = #$ pivot columns nullity(A) = dim Nul(A) = $\#$ nonpivot columns

Rank Theorem. $\text{rank}(A) + \text{nullity}(A) = \text{\#cols}(A)$

This ties together everything in the whole chapter: rank *A* describes the *b*'s so that $Ax = b$ is consistent and the nullity describes the solutions to $Ax = 0$. So more flexibility with *b* means less flexibility with *x*, and vice versa.

4 ロ ト 4 伊 ト 4 ヨ ト 4 ヨ ト - ヨ - タ Q Q Q

Example.
$$
A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}
$$

About names

Again, why did we need all these vocabulary words? One answer is that the rank theorem would be harder to understand if it was:

The size of a minimal spanning set for the set of solutions to $Ax = 0$ plus the size of a minimal spanning set for the set of *b* so that $Ax = b$ has a solution is equal to the number of columns of *A*.

Compare to: $\text{rank}(A) + \text{nullity}(A) = n$

"A common concept in history is that knowing the name of something or someone gives one power over that thing or person." –Loren Graham http://philoctetes.org/news/the_power_of_names_religion_mathematics

4 ロ ▶ 4 団 ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 Q Q

Section 2.9 Summary

• Rank Theorem. $\operatorname{rank}(A) + \dim \operatorname{Nul}(A) = \text{\#cols}(A)$

Typical exam questions

- Suppose that A is a 5×7 matrix, and that the column space of A is a line in \mathbb{R}^5 . Describe the set of solutions to $Ax = 0$.
- Suppose that *A* is a 5×7 matrix, and that the column space of *A* is \mathbb{R}^5 . Describe the set of solutions to $Ax = 0$.
- Suppose that A is a 5×7 matrix, and that the null space is a plane. Is *Ax* = *b* consistent, where $b = (1, 2, 3, 4, 5)$?
- True/false. There is a 3×2 matrix so that the column space and the null space are both lines.
- True/false. There is a 2×3 matrix so that the column space and the null space are both lines.
- True/false. Suppose that A is a 6×2 matrix and that the column space of *A* is 5 dimensional. Is it possible for (1*,* 0) and (1*,* 1) to be solutions to $Ax = b$ for some *b* in \mathbb{R}^6 ?

Sections 3.1

Matrix Transformations

Section 3.1 Outline

• Learn to think of matrices as functions, called matrix transformations

Kロト K部下 Kミト KミトーミーのQC

- *•* Learn the associated terminology: domain, codomain, range
- *•* Understand what certain matrices do to ^R*ⁿ*

From matrices to functions

Let *A* be an $m \times n$ matrix.

We define a function

 \blacktriangleright Demo

 $T: \mathbb{R}^n \to \mathbb{R}^m$ $T(v) = Av$

This is called a matrix transformation.

The domain of T is \mathbb{R}^n . all possible inputs The co-domain of T is \mathbb{R}^m . all possible outputs The range of T is the set of outputs: $Col(A)$ all possible outputs Solving $Ax = b$ means

This gives us a*nother* point of view of $Ax = b$

example range of $f(x)=x^2$ in Calc 1 is $[a, \infty)$. Cadomain is K

Example

Let
$$
A = \begin{pmatrix} 1 & 1 \ 0 & 1 \ 1 & 1 \end{pmatrix}
$$
, $u = \begin{pmatrix} 3 \ 4 \end{pmatrix}$, $b = \begin{pmatrix} 7 \ 5 \ 7 \end{pmatrix}$.
\nWhat is $T(u)$?
\n
$$
\begin{pmatrix} 1 & 1 \ 0 & 1 \ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \ 4 \ 4 \end{pmatrix} = \begin{pmatrix} 7 \ 4 \ 7 \end{pmatrix}
$$

\nFind v in \mathbb{R}^2 so that $T(v) = b$
\nSolving $Ax = b$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

 OQ

Find a vector in \mathbb{R}^3 that is not in the range of T . since $\begin{pmatrix} 1 & 1 \ 0 & 1 \ 1 & 1 \end{pmatrix} \begin{pmatrix} x \ y \ z \end{pmatrix} = \begin{pmatrix} x+y \ y \ x+y \end{pmatrix}$

any vector
with different

$$
1^{55}
$$
 as 3^{rd} entries. $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Square matrices

For a square matrix we can think of the associated matrix transformation

$$
T: \mathbb{R}^n \to \mathbb{R}^n
$$

as doing something to R*ⁿ*.

≮ロ ▶ ⊀ 御 ▶ ⊀ 唐 ▶ ⊀ 吾 ▶

€.

 QQ

What is the range in each case?

Poll

Kロト K個 K K ミト K ミト ニミー の Q Q

Square matrices

What does each matrix do to \mathbb{R}^2 ?

Hint: if you can't see it all at once, see what happens to the x - and y-axes.

Examples in \mathbb{R}^3

Section 3.1 Summary

- If A is an $m \times n$ matrix, then the associated matrix transformation T is given by $T(v) = Av$. This is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m and range $Col(A)$.
- If *A* is $n \times n$ then *T* does something to \mathbb{R}^n ; basic examples: reflection, projection, scaling, shear, rotation

 $\left(\frac{647}{5155}\frac{604}{51505}\right)$ (0 6 8) $\left(\frac{6}{5}\right)$ = $\left(\frac{1125}{1125}\right)$ Key example : Rabbits Yz secondyrs sunvw 2^{nd} have 6 babies 3rd yrs have 8 babies $Input: Popular(100)$ No 2^{nq} # 3^{nq} I years $A = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$ Output: Population for \Rightarrow

Typical exam questions

- What does the matrix $\left(\begin{smallmatrix} -1 & 0 \ 0 & -1 \end{smallmatrix}\right)$ do to \mathbb{R}^2 ?
- What does the matrix $\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$ $-1/\sqrt{2}$ 1/ $\sqrt{2}$) do to \mathbb{R}^2 ?
- What does the matrix $\left(\begin{smallmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right)$ $\left(\begin{smallmatrix} 1&0&0\0&0&0\0&0&0 \end{smallmatrix}\right)$ do to \mathbb{R}^3 ?
- What does the matrix $\left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{smallmatrix}\right)$ $\left(\begin{smallmatrix} 0 & 0 \ 1 & 0 \ 0 & 1 \end{smallmatrix}\right)$ do to \mathbb{R}^2 ?
- *•* True/false. If *A* is a matrix and *T* is the associated matrix transformation, then the statement $Ax = b$ is consistent is equivalent to the statement that *b* is in the range of *T*.

KOD KAPD KIDD KIDD I DAR

• True/false. There is a matrix *A* so that the domain of the associated matrix transformation is a line in \mathbb{R}^3 .

Sections 3.2

One-to-one and onto transformations

Section 3.2 Outline

- *•* Learn the definitions of one-to-one and onto functions
- *•* Determine if a given matrix transformation is one-to-one and/or onto

One-to-one

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each *b* in \mathbb{R}^m is the output for at most one *v* in \mathbb{R}^n .

In other words: different inputs have different outputs.

Theorem. Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

- *• T* is one-to-one
- *•* the columns of *A* are linearly independent
- $Ax = 0$ has only the trivial solution
- *• A* has a pivot in each column
- *•* the range of *T* has dimension *n*

What can we say about the relative sizes of *m* and *n* if *T* is one-to-one?

Draw a picture of the range of a one-to-one matrix transformation $\mathbb{R} \to \mathbb{R}^3$.

 $4\ \Box\ \rightarrow\ 4\ \overline{77}\ \rightarrow\ 4\ \overline{2}\ \rightarrow\ 4\ \overline{2}\ \rightarrow\ 2\ \overline{2}\qquad \text{and}\qquad \overline{2}\ \rightarrow\ 0\ \text{and}\qquad \overline{4}\ \rightarrow\ 0\ \text{and}\qquad \overline{4$

Onto

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of *T* equals the codomain \mathbb{R}^m , that is, each *b* in \mathbb{R}^m is the output for at least one input *v* in \mathbb{R}^m .

Theorem. Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

4 ロ ▶ 4 団 ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 Q Q

- *• T* is onto
- the columns of A span \mathbb{R}^m
- *• A* has a pivot in each row
- $Ax = b$ is consistent for all *b* in \mathbb{R}^m
- *•* the range of *T* has dimension *m*

What can we say about the relative sizes of *m* and *n* if *T* is onto?

Give an example of an onto matrix transformation $\mathbb{R}^3 \to \mathbb{R}$.

One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto?

$$
\left(\begin{array}{rrr}1 & 0 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 9\end{array}\right) \left(\begin{array}{rrr}1 & 0 \\ 1 & 1 \\ 2 & 1\end{array}\right) \left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \left(\begin{array}{rrr}2 & 1 \\ 1 & 1\end{array}\right)
$$

Kロト K団 K K ミト K ミト 「ミ」 のQ CK

One-to-one and Onto

Which of the previously-studied matrix transformations of \mathbb{R}^2 are one-to-one? Onto?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

$$
\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}
$$
 reflection
\n
$$
\begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}
$$
 projection
\n
$$
\begin{pmatrix} 3 & 0 \ 0 & 3 \end{pmatrix}
$$
 scaling
\n
$$
\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}
$$
 shear
\n
$$
\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
$$
 rotation