Math 1553 Supplement, §5.1 and §5.2 Solutions

These are additional practice problems after completing the worksheet.

1. Find a basis \mathcal{B} for the (-1)-eigenspace of $Z = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$

Solution.

For $\lambda = -1$, we find Nul($Z - \lambda I$).

$$\left(Z - \lambda I \mid 0 \right) = \left(Z + I \mid 0 \right) = \begin{pmatrix} 3 & 3 & 1 \mid 0 \\ 3 & 3 & 4 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \xrightarrow{\text{rref}} \left(\begin{array}{ccc} 1 & 1 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \right).$$

Therefore, x = -y, y = y, and z = 0, so

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

A basis is $\mathcal{B} = \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}$. We can check to ensure $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector with corresponding eigenvalue -1:

corresponding eigenvalue –1:

$$Z\begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1\\3 & 2 & 4\\0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} -2+3\\-3+2\\0 \end{pmatrix} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = -\begin{pmatrix} -1\\1\\0 \end{pmatrix}.$$

2. Give an example of matrices *A* and *B* which have the same eigenvalues and the same algebraic multiplicities for each eigenvalue, but which are *not* similar. Justify why they are not similar.

Solution.

Many examples possible. For example, $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Both *A* and *B* have characteristic equation $\lambda^2 = 0$, so each has eigenvalue $\lambda = 0$ with algebraic multiplicity two. However, the only matrix similar to *A* is the zero matrix: if *P* is any invertible 2×2 matrix then $P^{-1}AP = P^{-1}0P = 0$. Therefore, *A* and *B* are not similar.

3. Using facts about determinants, justify the following fact: if *A* is an $n \times n$ matrix, then *A* and A^T have the same characteristic polynomial.

Solution.

We will use three facts which apply to all $n \times n$ matrices B, Y, Z:

(1) det(B) = det(B^T).
(2) (Y - Z)^T = Y^T - Z^T
(3) If λ is any scalar then (λI)^T = λI since the identity matrix is completely symmetric about its diagonal.

Using these three facts in order, we find

$$\det(A - \lambda I) = \det\left((A - \lambda I)^T\right) = \det\left(A^T - (\lambda I)^T\right) = \det(A^T - \lambda I).$$