Supplemental problems: §5.4

- **1.** True or false. Answer true if the statement is always true. Otherwise, answer false. **a**) If *A* is an invertible matrix and *A* is diagonalizable, then A^{-1} is diagonalizable.
	- **b**) A diagonalizable $n \times n$ matrix admits *n* linearly independent eigenvectors.
	- **c)** If *A* is diagonalizable, then *A* has *n* distinct eigenvalues.

Solution.

- **a**) True. If $A = PDP^{-1}$ and *A* is invertible then its eigenvalues are all nonzero, so the diagonal entries of *D* are nonzero and thus *D* is invertible (pivot in every diagonal position). Thus, $A^{-1} = (PDP^{-1})^{-1} = (P^{-1})^{-1}D^{-1}P^{-1} = PD^{-1}P^{-1}$.
- **b)** True. By the Diagonalization Theorem, an *n*×*n* matrix is diagonalizable *if and only if* it admits *n* linearly independent eigenvectors.
- **c)** False. For instance, $\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ is diagonal but has only one eigenvalue.
- **2.** Give examples of 2×2 matrices with the following properties. Justify your answers. **a)** A matrix *A* which is invertible and diagonalizable.
	- **b)** A matrix *B* which is invertible but not diagonalizable.
	- **c)** A matrix *C* which is not invertible but is diagonalizable.
	- **d)** A matrix *D* which is neither invertible nor diagonalizable.

Solution.

a) We can take any diagonal matrix with nonzero diagonal entries:

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
$$

b) A shear has only one eigenvalue $\lambda = 1$. The associated eigenspace is the *x*axis, so there do not exist two linearly independent eigenvectors. Hence it is not diagonalizable.

$$
B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
$$

c) We can take any diagonal matrix with some zero diagonal entries:

$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
$$

d) Such a matrix can only have the eigenvalue zero — otherwise it would have two eigenvalues, hence be diagonalizable. Thus the characteristic polynomial is $f(\lambda) = \lambda^2$. Here is a matrix with trace and determinant zero, whose zeroeigenspace (i.e., null space) is not all of **R** 2 :

$$
D = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
$$

3.
$$
A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}
$$
.

- **a)** Find the eigenvalues of *A*, and find a basis for each eigenspace.
- **b)** Is *A* diagonalizable? If your answer is yes, find a diagonal matrix *D* and an invertible matrix *C* so that $A = CDC^{-1}$. If your answer is no, justify why *A* is not diagonalizable.

Solution.

a) We solve
$$
0 = det(A - \lambda I)
$$
.
\n
$$
0 = det \begin{pmatrix} 2-\lambda & 3 & 1 \\ 3 & 2-\lambda & 4 \\ 0 & 0 & -1-\lambda \end{pmatrix} = (-1-\lambda)(-1)^{6} det \begin{pmatrix} 2-\lambda & 3 \\ 3 & 2-\lambda \end{pmatrix} = (-1-\lambda)((2-\lambda)^{2}-9)
$$
\n
$$
= (-1-\lambda)(\lambda^{2}-4\lambda-5) = -(\lambda+1)^{2}(\lambda-5).
$$
\nSo $\lambda = -1$ and $\lambda = 5$ are the eigenvalues.
\n
$$
\frac{\lambda = -1}{0} \cdot (A + I | 0) = \begin{pmatrix} 3 & 3 & 1 & 0 \\ 3 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \frac{R_{2} = R_{2} - R_{1}}{0} \begin{pmatrix} 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \frac{R_{1} = R_{1} - R_{2}}{\text{then } R_{1} = R_{1}/3}
$$
\n
$$
\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ with solution } x_{1} = -x_{2}, x_{2} = x_{2}, x_{3} = 0. \text{ The } (-1) \text{-eigenspace}
$$
\nhas basis $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$.
\n
$$
\frac{\lambda = 5}{\lambda = 5}:
$$
\n
$$
(A - 5I | 0) = \begin{pmatrix} -3 & 3 & 1 & 0 \\ 3 & -3 & 4 & 0 \\ 0 & 0 & -6 & 0 \end{pmatrix} \frac{R_{2} = R_{2} + R_{1}}{R_{3} = R_{3}/(-6)} \begin{pmatrix} -3 & 3 & 1 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \frac{R_{1} = R_{1} - R_{3}}{2} \text{ then } R_{2} = R_{2} - S_{1}R_{3}
$$
\n
$$
\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 &
$$

b) *A* is a 3 × 3 matrix that only admits 2 linearly independent eigenvectors, so *A* is not diagonalizable.

4. Let $A =$ $\begin{pmatrix} 8 & 36 & 62 \end{pmatrix}$ −6 −34 −62 $\begin{bmatrix} 8 & 36 & 62 \\ 6 & -34 & -62 \\ 3 & 18 & 33 \end{bmatrix}$.

> The characteristic polynomial for *A* is $-\lambda^3 + 7\lambda^2 - 16\lambda + 12$, and $\lambda - 3$ is a factor. Decide if *A* is diagonalizable. If it is, find an invertible matrix *C* and a diagonal matrix *D* such that $A = CDC^{-1}$.

Solution.

By polynomial division,

$$
\frac{-\lambda^3 + 7\lambda^2 - 16\lambda + 12}{\lambda - 3} = -\lambda^2 + 4\lambda - 4 = -(\lambda - 2)^2.
$$

Thus, the characteristic poly factors as $-(\lambda-3)(\lambda-2)^2$, so the eigenalues are $\lambda_1=3$ and $\lambda_2 = 2$.

For $\lambda_1 = 3$, we row-reduce $A - 3I$:

$$
\begin{pmatrix}\n5 & 36 & 62 \\
-6 & -37 & -62 \\
3 & 18 & 30\n\end{pmatrix}\n\xrightarrow[\text{New } R_1)/3]{\text{R}_1 \leftrightarrow R_3} \begin{pmatrix}\n1 & 6 & 10 \\
-6 & -37 & -62 \\
5 & 36 & 62\n\end{pmatrix}\n\xrightarrow[\text{R}_2 = R_2 + 6R_1]{\text{R}_2 = R_2 + 6R_1} \begin{pmatrix}\n1 & 6 & 10 \\
0 & -1 & -2 \\
0 & 6 & 12\n\end{pmatrix}
$$
\n
$$
\xrightarrow[\text{then } R_2 = -R_2]{\text{R}_2 = R_3 + 6R_2} \begin{pmatrix}\n1 & 6 & 10 \\
0 & 1 & 2 \\
0 & 0 & 0\n\end{pmatrix}\n\xrightarrow{\text{R}_1 = R_1 - 6R_2} \begin{pmatrix}\n1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 0\n\end{pmatrix}.
$$

Therefore, the solutions to $(A-3I \mid 0)$ are $x_1 = 2x_3$, $x_2 = -2x_3$, $x_3 = x_3$.

$$
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_3 \\ -2x_3 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}.
$$
 The 3-eigenspace has basis
$$
\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}.
$$

For $\lambda_2 = 2$, we row-reduce $A - 2I$:

$$
\begin{pmatrix} 6 & 36 & 62 \ -6 & -36 & -62 \ 3 & 18 & 31 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 6 & \frac{31}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

The solutions to $(A-2I \quad 0)$ are $x_1 = -6x_2 - \frac{31}{3}$ x_3^2 x_3 , $x_2 = x_2$, $x_3 = x_3$.

 $\overline{1}$

0

$$
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -6x_2 - \frac{31}{3}x_3 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -6 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -\frac{31}{3} \\ 0 \\ 1 \end{pmatrix}.
$$

The 2-eigenspace has basis
$$
\left\{ \begin{pmatrix} -6 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{31}{3} \\ 0 \\ 1 \end{pmatrix} \right\}.
$$

1

J

3

Therefore, $A = CDC^{-1}$ where

$$
C = \begin{pmatrix} 2 & -6 & -\frac{31}{3} \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.
$$

Note that we arranged the eigenvectors in *C* in order of the eigenvalues 3, 2, 2, so we had to put the diagonals of *D* in the same order.

- **5.** Which of the following 3×3 matrices are necessarily diagonalizable over the real numbers? (Circle all that apply.)
	- 1. A matrix with three distinct real eigenvalues.
	- 2. A matrix with one real eigenvalue.
	- 3. A matrix with a real eigenvalue λ of algebraic multiplicity 2, such that the *λ*-eigenspace has dimension 2.
	- 4. A matrix with a real eigenvalue *λ* such that the *λ*-eigenspace has dimension 2.

Solution.

The matrices in 1 and 3 are diagonalizable. A matrix with three distinct real eigenvalues automatically admits three linearly independent eigenvectors. If a matrix *A* has a real eigenvalue λ_1 of algebraic multiplicity 2, then it has another real eigenvalue λ_2 of algebraic multiplicity 1. The two eigenspaces provide three linearly independent eigenvectors.

The matrices in 2 and 4 need not be diagonalizable.

- **6.** Suppose a 2 × 2 matrix *A* has eigenvalue $\lambda_1 = -2$ with eigenvector $v_1 = \begin{pmatrix} 3/2 \\ 1 \end{pmatrix}$ 1 λ , and eigenvalue $\lambda_2 = -1$ with eigenvector $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ −1 λ .
	- **a)** Find *A*.
	- **b**) Find A^{100} .

Solution.

a) We have $A = CDC^{-1}$ where

$$
C = \begin{pmatrix} 3/2 & 1 \\ 1 & -1 \end{pmatrix} \text{ and } D = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}.
$$

We compute $C^{-1} = \frac{1}{-5/2} \begin{pmatrix} -1 & -1 \\ -1 & 3/2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 2 \\ 2 & -3 \end{pmatrix}.$

$$
A = CDC^{-1} = \frac{1}{5} \begin{pmatrix} 3/2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & -3 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -8 & -3 \\ -2 & -7 \end{pmatrix}.
$$

$$
A^{100} = CD^{100}C^{-1} = \frac{1}{5} \begin{pmatrix} 3/2 & 1 \\ 1 & -1 \end{pmatrix} \cdot D^{100} \begin{pmatrix} 2 & 2 \\ 2 & -3 \end{pmatrix}
$$

= $\frac{1}{5} \begin{pmatrix} 3/2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2^{100} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & -3 \end{pmatrix}$
= $\frac{1}{5} \begin{pmatrix} 3/2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \cdot 2^{100} & 2 \cdot 2^{100} \\ 2 & -3 \end{pmatrix}$
= $\frac{1}{5} \begin{pmatrix} 3 \cdot 2^{100} + 2 & 3 \cdot 2^{100} - 3 \\ 2^{101} - 2 & 2^{101} + 3 \end{pmatrix}.$

7. Suppose that $A = C \begin{pmatrix} 1/2 & 0 \\ 0 & -1 \end{pmatrix}$ $0 -1$ λ C^{-1} , where *C* has columns v_1 and v_2 . Given *x* and *y* in the picture below, draw the vectors *Ax* and *Ay*.

Solution.

A does the same thing as $D =$ 1*/*2 0 $0 -1$ λ , but in the v_1 , v_2 -coordinate system. Since *D* scales the first coordinate by 1*/*2 and the second coordinate by −1, hence *A* scales the v_1 -coordinate by 1/2 and the v_2 -coordinate by -1 .

Supplemental problems: §5.5

- **1. a**) If *A* is the matrix that implements rotation by 143° in \mathbb{R}^2 , then *A* has no real eigenvalues.
	- **b**) A 3 \times 3 matrix can have eigenvalues 3, 5, and $2 + i$.
	- **c**) If $v =$ $(2 + i)$ 1) is an eigenvector of *A* corresponding to the eigenvalue $\lambda = 1 - i$, then $w =$ $\sqrt{2i-1}$ *i* λ is an eigenvector of *A* corresponding to the eigenvalue $\lambda = 1 - i$

Solution.

- **a**) True. If *A* had a real eigenvalue $λ$, then we would have $Ax = λx$ for some nonzero vector x in \mathbf{R}^2 . This means that x would lie on the same line through the origin as the rotation of x by 143° , which is impossible.
- **b)** False. If $2 + i$ is an eigenvalue then so is its conjugate $2 i$.
- **c)** True. Any nonzero complex multiple of *v* is also an eigenvector for eigenvalue $1 - i$, and $w = iv$.
- **2.** Consider the matrix

$$
A = \begin{pmatrix} 3\sqrt{3} - 1 & -5\sqrt{3} \\ 2\sqrt{3} & -3\sqrt{3} - 1 \end{pmatrix}
$$

- **a)** Find both complex eigenvalues of *A*.
- **b)** Find an eigenvector corresponding to each eigenvalue.

Solution.

a) We compute the characteristic polynomial: p

$$
f(\lambda) = \det \begin{pmatrix} 3\sqrt{3} - 1 - \lambda & -5\sqrt{3} \\ 2\sqrt{3} & -3\sqrt{3} - 1 - \lambda \end{pmatrix}
$$

= $(-1 - \lambda + 3\sqrt{3})(-1 - \lambda - 3\sqrt{3}) + (2)(5)(3)$
= $(-1 - \lambda)^2 - 9(3) + 10(3)$
= $\lambda^2 + 2\lambda + 4$.

By the quadratic formula,

$$
\lambda = \frac{-2 \pm \sqrt{2^2 - 4(4)}}{2} = \frac{-2 \pm 2\sqrt{3}i}{2} = -1 \pm \sqrt{3}i.
$$

b) Let $\lambda = -1 -$ 3*i*. Then

$$
A - \lambda I = \begin{pmatrix} (i+3)\sqrt{3} & -5\sqrt{3} \\ 2\sqrt{3} & (i-3)\sqrt{3} \end{pmatrix}.
$$

Since det($A-\lambda I$) = 0, the second row is a multiple of the first, so a row echelon form of *A* is

$$
\left(\begin{array}{cc} i+3 & -5 \\ 0 & 0 \end{array}\right).
$$

Hence an eigenvector with eigenvalue −1 − p $3i$ is $v =$ \int 5 3 + *i* λ . It follows that an eigenvector with eigenvalue −1 + p $3i$ is $\overline{v} =$ \int 5 3 − *i* λ .

3. Let $A =$ $(4 -3 3)$ $3 \t 4 \t -2$ $\begin{pmatrix} 4 & -3 & 3 \\ 3 & 4 & -2 \\ 0 & 0 & 2 \end{pmatrix}$. Find all eigenvalues of *A*. For each eigenvalue of *A*, find a

corresponding eigenvector.

Solution.

First we compute the characteristic polynomial by expanding cofactors along the third row:

$$
f(\lambda) = \det\begin{pmatrix} 4-\lambda & -3 & 3 \\ 3 & 4-\lambda & -2 \\ 0 & 0 & 2-\lambda \end{pmatrix} = (2-\lambda)\det\begin{pmatrix} 4-\lambda & -3 \\ 3 & 4-\lambda \end{pmatrix}
$$

$$
= (2-\lambda)\big((4-\lambda)^2 + 9\big) = (2-\lambda)(\lambda^2 - 8\lambda + 25).
$$

Using the quadratic equation on the second factor, we find the eigenvalues

$$
\lambda_1 = 2 \qquad \lambda_2 = 4 - 3i \qquad \overline{\lambda}_2 = 4 + 3i.
$$

Next compute an eigenvector with eigenvalue $\lambda_1 = 2$:

$$
A - 2I = \begin{pmatrix} 2 & -3 & 3 \\ 3 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

The parametric form is $x = 0$, $y = z$, so the parametric vector form of the solution is \sim

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\text{eigenvector}} v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.
$$

Now we compute an eigenvector with eigenvalue $\lambda_2 = 4 - 3i$:

$$
A = (4-3i)I = \begin{pmatrix} 3i & -3 & 3 \\ 3 & 3i & -2 \\ 0 & 0 & 3i-2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 3 & 3i & -2 \\ 3i & -3 & 3 \\ 0 & 0 & 3i-2 \end{pmatrix}
$$

$$
\xrightarrow{R_2 = R_2 - iR_1} \begin{pmatrix} 3 & 3i & -2 \\ 0 & 0 & 3+2i \\ 0 & 0 & 3i-2 \end{pmatrix} \xrightarrow{R_2 = R_2 \div (3+2i)} \begin{pmatrix} 3 & 3i & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 3i-2 \end{pmatrix}
$$

\nrow replacements
$$
\begin{pmatrix} 3 & 3i & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 = R_1 \div 3} \begin{pmatrix} 1 & i & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

The parametric form of the solution is $x = -iy$, $z = 0$, so the parametric vector form is

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{eigenvector}} v_2 = \begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}.
$$

An eigenvector for the complex conjugate eigenvalue $\overline{\lambda}_2 = 4 + 3i$ is the complex

conjugate eigenvector \overline{v}_{2} $=$ *i* 1 0 ! .