Math 1553 Supplement, §5.6 and §6.1

1. Suppose *p* and *q* are real numbers on the open interval (0, 1), and

$$A = \begin{pmatrix} p & 1-q \\ 1-p & q \end{pmatrix}$$

- (1) Is A stochastic? Why?
- (2) Does *A* have unique steady state vector? Why?
- (3) By inspection(without computation), give an eigenvalue of A.
- (4) Compute the steady-state vector of *A*.
- (5) Compute the limit

$$\lim_{n\to\infty}A^n$$

2.
$$y = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}, \quad u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad (u)_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

- (1) Determine whether u_1 and u_2
 - (a) are linearly independent
 - (b) are mutually orthogonal
 - (c) are orthonormal
 - (d) span \mathbf{R}^3
- (2) Is y in $W = \text{Span}\{u_1, u_2\}$?
- (3) Compute the vector, $\hat{y} \in W$, that most closely approximates y. [You may need orthogonal projections from §6.2]
- (4) Construct a vector, z, that is in W^{\perp} .
- (5) Make a rough sketch (use online tools) of u_1, u_2, y, \hat{y} , and z.