
Math 1553 Worksheet §5.4, 5.5

1. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose
entries are real numbers.

a) If A is a 3 × 3 matrix with characteristic polynomial −λ(λ − 5)2, then the 5-
eigenspace is 2-dimensional.

b) If A is an invertible 2× 2 matrix, then A is diagonalizable.

c) A 3× 3 matrix A can have a non-real complex eigenvalue with multiplicity 2.

Solution.
a) Maybe. The geometric multiplicity of λ = 5 can be 1 or 2. For example, the

matrix

 

5 0 0
0 5 0
0 0 0

!

has a 5-eigenspace which is 2-dimensional, whereas the

matrix

 

5 1 0
0 5 0
0 0 0

!

has a 5-eigenspace which is 1-dimensional. Both matrices

have characteristic polynomial −λ(5−λ)2.

b) Maybe. The identity matrix is invertible and diagonalizable, but the matrix
�

1 1
0 1

�

is invertible but not diagonalizable.

c) No. If c is a (non-real) complex eigenvalue with multiplicity 2, then its conju-
gate c is an eigenvalue with multiplicity 2 since complex eigenvalues always
occur in conjugate pairs. This would mean A has a characteristic polynomial
of degree 4 or more, which is impossible for a 3× 3 matrix.



2. A=

 

2 3 1
3 2 4
0 0 −1

!

.

a) Find the eigenvalues of A, and find a basis for each eigenspace.

b) Is A diagonalizable? If your answer is yes, find a diagonal matrix D and an
invertible matrix C so that A = C DC−1. If your answer is no, justify why A is
not diagonalizable.

Solution.
a) We solve 0= det(A−λI).

0= det

 

2−λ 3 1
3 2−λ 4
0 0 −1−λ

!

= (−1−λ)(−1)6 det
�

2−λ 3
3 2−λ

�

= (−1−λ)((2−λ)2 − 9)

= (−1−λ)(λ2 − 4λ− 5) = −(λ+ 1)2(λ− 5).

So λ= −1 and λ= 5 are the eigenvalues.

λ= −1:
�

A+ I 0
�

=

 

3 3 1 0
3 3 4 0
0 0 0 0

!

R2=R2−R1−−−−−→

 

3 3 1 0
0 0 1 0
0 0 0 0

!

R1=R1−R2−−−−−−−→
then R1=R1/3

 

1 1 0 0
0 0 1 0
0 0 0 0

!

, with solution x1 = −x2, x2 = x2, x3 = 0. The (−1)-eigenspace

has basis

( −1
1
0

!)

.

λ= 5:

�

A− 5I 0
�

=

 −3 3 1 0
3 −3 4 0
0 0 −6 0

!

R2=R2+R1−−−−−−→
R3=R3/(−6)

 −3 3 1 0
0 0 5 0
0 0 1 0

!

R1=R1−R3, R2=R2−5R3−−−−−−−−−−−−−→
then R2↔R3, R1/(−3)

 

1 −1 0 0
0 0 1 0
0 0 0 0

!

,

with solution x1 = x2, x2 = x2, x3 = 0. The 5-eigenspace has basis

( 

1
1
0

!)

.

b) A is a 3× 3 matrix that only admits 2 linearly independent eigenvectors, so A
is not diagonalizable.


