Math 1553 Worksheet §1.2, §1.3

1. Is it possible for a linear system to have a unique solution if it has more equations than variables? If yes, give an example. If no, justify why it is impossible.

- **2. a)** Which of the following matrices are in row echelon form? Which are in reduced row echelon form?
 - **b)** For the matrices in row echelon form, which entries are the pivots? What are the pivot columns?

$ \left(\begin{array}{ccc} 1 & 0\\ 0 & 2\\ 0 & 0 \end{array}\right) $	0 1 0	0 0 1	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$		$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	1 2 0 0	0 0 0 0	1 2 3 0	$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$	
---	-------------	-------------	---	--	--	------------------	------------------	------------------	--	--

3. Find the parametric form of the solutions of following system of equations in x_1 , x_2 , and x_3 by putting an augmented matrix into reduced row echelon form. State which variables (if any) are free variables. Describe the solution set geometrically.

$$\begin{array}{rrrr} x_1 + 3x_2 + & x_3 = & 1 \\ -4x_1 - 9x_2 + 2x_3 = & -1 \\ & -3x_2 - 6x_3 = & -3. \end{array}$$