- If A is a 3 × 5 matrix and B is a 3 × 2 matrix, which of the following are defined?
 a) A-B
 - **b)** *AB*
 - **c)** $A^T B$
 - **d)** $B^T A$
 - **e)** *A*²
- **2.** Consider the following linear transformations:

 $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ *T* projects onto the *xy*-plane, forgetting the *z*-coordinate $U: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ *U* rotates clockwise by 90° $V: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ *V* scales the *x*-direction by a factor of 2.

Let A, B, C be the matrices for T, U, V, respectively.

- **a)** Compute *A*, *B*, and *C*.
- **b)** Compute the matrix for $V \circ U \circ T$.
- **c)** Compute the matrix for $U \circ V \circ T$.
- **d)** Describe U^{-1} and V^{-1} , and compute their matrices.

- **3.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - **a)** If *A* is an $m \times n$ matrix and *B* is an $n \times p$ matrix, then each column of *AB* is a linear combination of the columns of *A*.
 - **b)** If *A* and *B* are $n \times n$ and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
 - c) If A^T is not invertible, then A is not invertible.
 - **d)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - e) If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.
 - f) If *A* and *B* are $n \times n$ matrices and ABx = 0 has a unique solution, then Ax = 0 has a unique solution.
- **4.** Suppose *A* is an invertible 3×3 matrix with the following equations hold. Find *A*.

$$A^{-1}e_1 = \begin{pmatrix} 4\\1\\0 \end{pmatrix}, \quad A^{-1}e_2 = \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \quad A^{-1}e_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$