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Chapter 0

Overview



Linear. Algebra.

What is Linear Algebra?

Linear

I having to do with lines/planes/etc.

I For example, x + y + 3z = 7, not sin, log, x2, etc.

Algebra

I solving equations involving numbers and symbols

I from al-jebr (Arabic), meaning reunion of broken parts

I 9th century Abu Ja’far Muhammad ibn Muso al-Khwarizmi



Why a whole course?

But these are the easiest kind of equations! I learned how to solve them in 7th
grade!

Ah, but engineers need to solve lots of equations in lots of variables.

3x1 + 4x2 + 10x3 + 19x4 − 2x5 − 3x6 = 141

7x1 + 2x2 − 13x3 − 7x4 + 21x5 + 8x6 = 2567

−x1 + 9x2 + 3
2
x3 + x4 + 14x5 + 27x6 = 26

1
2
x1 + 4x2 + 10x3 + 11x4 + 2x5 + x6 = −15

Often, it’s enough to know some information about the set of solutions without
having to solve the equations at all!

Also, what if one of the coefficients of the xi is itself a parameter— like an
unknown real number t?

In real life, the difficult part is often in recognizing that a problem can be
solved using linear algebra in the first place: need conceptual understanding.



Linear Algebra in Engineering

Large classes of engineering problems,
no matter how huge, can be reduced to
linear algebra:

Ax = b or

Ax = λx

“. . . and now it’s just linear algebra”



Applications of Linear Algebra

Civil Engineering: How much traffic flows through the four labeled segments?

system of linear equations:

w + 120 = x + 250

x + 120 = y + 70

y + 530 = z + 390

z + 115 = w + 175

Traffic flow (cars/hr)

x

y

z

w

120

250

70

120

530

390

175

115



Applications of Linear Algebra

Chemistry: Balancing reaction equations

x C2H6 + y O2 → z CO2 + w H2O

system of linear equations, one equation for each element.

2x = z

6x = 2w

2y = 2z + w



Applications of Linear Algebra

Biology: In a population of rabbits. . .

I half of the new born rabbits survive their first year

I of those, half survive their second year

I the maximum life span is three years

I rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population in 2016 (in terms of the number of first, second, and
third year rabbits), then what is the population in 2017?

system of linear equations:

6y2016 + 8z2016 = x2017
1
2
x2016 = y2017

1
2
y2016 = z2017

Question
Does the rabbit population have an asymptotic behavior? Is this even a linear
algebra question? Yes, it is! [interactive]

http://textbooks.math.gatech.edu/ila/demos/rabbits/book_demo.html


Applications of Linear Algebra

Geometry and Astronomy: Find the equation of a circle passing through 3
given points, say (1, 0), (0, 1), and (1, 1). The general form of a circle is
a(x2 + y 2) + bx + cy + d = 0.

system of linear equations:

a + b + d = 0

a + c + d = 0

2a + b + c + d = 0

Very similar to: compute the orbit of a planet:

ax2 + by 2 + cxy + dx + ey + f = 0



Applications of Linear Algebra

Google: “The 25 billion dollar eigenvector.” Each web page has some
importance, which it shares via outgoing links to other pages

system of linear equations (in gazillions of variables).

Larry Page flies around in a private 747 because he paid attention in his linear
algebra class!



Overview of the Course

I Solve the matrix equation Ax = b
I Solve systems of linear equations using matrices, row reduction, and

inverses.
I Solve systems of linear equations with varying parameters using parametric

forms for solutions, the geometry of linear transformations, the
characterizations of invertible matrices, and determinants.

I Solve the matrix equation Ax = λx
I Solve eigenvalue problems through the use of the characteristic polynomial.
I Understand the dynamics of a linear transformation via the computation of

eigenvalues, eigenvectors, and diagonalization.

I Almost solve the equation Ax = b
I Find best-fit solutions to systems of linear equations that have no actual

solution using least squares approximations.



What to Expect This Semester

Your previous math courses probably focused on how to do (sometimes rather
involved) computations.

I Compute the derivative of sin(log x) cos(ex).

I Compute
∫ 1

0
(1− cos(x)) dx .

This is important, but Matlab can do all these problems better than any of us
can. Nobody is going to hire you to do something a computer can do better.

If a computer can do the problem better than you can, then it’s
just an algorithm: this is not problem solving.

So what are we going to do?

I About half the material focuses on how to do linear algebra
computations—that is still important.

I The other half is on conceptual understanding of linear algebra. This is
much more subtle: it’s about figuring out what question to ask the
computer, or whether you actually need to do any computations at all.



Interactive Linear Algebra

Dan Margalit and Joe Rabinoff have written a free online textbook called
Interactive Linear Algebra, with a version specifically created for this course.

https://textbooks.math.gatech.edu/ila/1553/

The content of the course (i.e., the material that is fair game for exams) is
exactly what you see in the textbook. This does not include the parts you have
to click to uncover, which are generally examples and remarks.

There are about 150 interactive demonstrations in the book. They’re there for
a reason: you’ll be expected to gain and demonstrate a geometric
understanding of the material.

https://textbooks.math.gatech.edu/ila/1553/


How to Succeed in this Course

I Practice, practice, practice! It makes sense to most people that if you
want to get good at tennis, you have to hit a million forehands and
backhands. But for some reason, many people think you’re either born
good at math, or you’re not. This is ridiculous. People who are good at
math are just people who have spent a long time thinking about math.
Nobody is born good at math.

Not good at math

I Do the homework carefully. Homework is practice for the quizzes. Quizzes
are practice for the midterms. Remember what I said about practice?

I Study the pictures. I expect you to play around with the demos in the
book until you understand them!

I Take advantage of the resources provided. Come to office hours! Read
the textbook! Go to Math Lab!



Course Administration

I Homework is on WeBWorK (access through Canvas), and is due
Thursdays at 11:59pm (except the Warmup which does not count and is
listed as due Friday).

I Quizzes happen in studio most weeks.

I Piazza polls measure class participation. Sign up for Piazza through
Canvas, with your Canvas email address. It’s easiest if you then download
the Piazza app on your phone.

I Exams: there are three midterms, and a cumulative final.



Resources

On the webpage you’ll find:

I The textbook: Interactive Linear Algebra is online-only.

I Course materials: practice exams, worksheet solutions, etc.

I Course organization: grading policies, details about homework and exams,
etc.

I Help and advice: how to succeed in this course, resources available to you.

I Calendar: what will happen on which day, when the midterms are, etc.

Canvas: your grades, links to Piazza and WeBWorK, announcements.

Piazza: this is where to ask questions.

WeBWorK: our online homework system.



Chapter 1

Systems of Linear Equations: Algebra



Section 1.1

Systems of Linear Equations



Line, Plane, Space, . . .

Recall that R denotes the collection of all real numbers, i.e. the number line.
It contains numbers like 0,−1, π, 3

2
, . . .

Definition
Let n be a positive whole number. We define

Rn = all ordered n-tuples of real numbers (x1, x2, x3, . . . , xn).

Example

When n = 1, we just get R back: R1 = R. Geometrically, this is the number
line.

−3 −2 −1 0 1 2 3



Line, Plane, Space, . . .
Continued

Example

When n = 2, we can think of R2 as the plane. This is because every point on
the plane can be represented by an ordered pair of real numbers, namely, its x-
and y -coordinates.

x

y

(1, 2)

(0,−3)



Line, Plane, Space, . . .
Continued

Example

When n = 3, we can think of R3 as the space we (appear to) live in. This is
because every point in space can be represented by an ordered triple of real
numbers, namely, its x-, y -, and z-coordinates.

x

y

z

(1,−1, 3)
(−2, 2, 2)



Line, Plane, Space, . . .
Continued

So what is R4? or R5? or Rn?

. . . go back to the definition: ordered n-tuples of real numbers

(x1, x2, x3, . . . , xn).

They’re still “geometric” spaces, in the sense that our intuition for R2 and R3

sometimes extends to Rn, but they’re harder to visualize.

We’ll make definitions and state theorems that apply to any Rn, but we’ll only
draw pictures for R2 and R3.

The power of using these spaces is the ability to use elements of Rn to label
various objects of interest, like solutions to systems of equations.



Labeling with Rn

Example

All colors you can see can be described by three quantities: the amount of red,
green, and blue light in that color. Therefore, we can use the elements of R3 to
label all colors: the point (.2, .4, .9) labels the color with 20% red, 40% green,
and 90% blue.

red

b
lu

e

green



Labeling with Rn

Example

Last time we could have used R4 to label the amount of traffic (x , y , z ,w)
passing through four streets.

x

y

z

w

For instance the point (100, 20, 30, 150) corresponds to a situation where 100
cars per hour drive on road x , 20 cars per hour drive on road y , etc.



One Linear Equation

What does the solution set of a linear equation look like?

x + y = 1 a line in the plane: y = 1− x
This is called the implicit equation of the line.

We can write the same line in parametric form
in R2:

(x , y) = (t, 1− t) t in R.

This means that every point on the line has the
form (t, 1 − t) for some real number t. Note
we are using R to label the points on a line in
R2.

t = 0

t = 1

t = −1

Aside
What is a line? A ray that is straight and infinite in both directions.



One Linear Equation
Continued

What does the solution set of a linear equation look like?

x + y + z = 1 a plane in space:
This is the implicit equation of the plane.

x

y

z

(t, w) = (−1, 1)

(t, w) = (2,−3)

(t, w) = (1, 1)

[interactive]
Does this plane have a parametric form?

(x , y , z) = (1− t − w , t, w) t,w in R.

Note we are using R2 to label the points on a plane in R3.

Aside
What is a plane? A flat sheet of paper that’s infinite in all directions.

http://textbooks.math.gatech.edu/ila/demos/plane.html?coeffs=t,w


One Linear Equation
Continued

What does the solution set of a linear equation look like?

x + y + z + w = 1 a “3-plane” in “4-space”. . . [not pictured here]



Poll

Everybody get out your gadgets!

Is the plane from the previous example equal to R2?

A. Yes B. No

Poll

x

y

z

No! Every point on this plane is in R3: that means it has three coordinates.
For instance, (1, 0, 0). Every point in R2 has two coordinates. But we can label
the points on the plane by R2.



Systems of Linear Equations

What does the solution set of a system of more than one linear equation look
like?

x − 3y = −3

2x + y = 8

. . . is the intersection of two
lines, which is a point in this
case.

In general it’s an intersection of lines, planes, etc.

[two planes intersecting]

http://textbooks.math.gatech.edu/ila/demos/planes.html


Kinds of Solution Sets

In what other ways can two lines intersect?

x − 3y = −3

x − 3y = 3

has no solution: the lines are
parallel.

A system of equations with no solutions is called inconsistent.



Kinds of Solution Sets

In what other ways can two lines intersect?

x − 3y = −3

2x − 6y = −6

has infinitely many solutions:
they are the same line.

Note that multiplying an equation by a nonzero number gives the same
solution set. In other words, they are equivalent (systems of) equations.



Summary

I Rn is the set of ordered lists of n numbers.

I Rn can be used to label geometric objects, like R2 can label points on a
plane.

I The solutions of a system equations look like an intersection of lines,
planes, etc.

I Finding all the solutions of a system of equations means finding a
parametric form: a labeling by some Rn.



Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

This is the kind of problem we’ll talk about for the first half of the course.

I A solution is a list of numbers x , y , z , . . .
that makes all of the equations true.

I The solution set is the collection of all
solutions.

I Solving the system means finding the
solution set in a “parameterized” form.

What is a systematic way to solve a system of equations?



Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

What strategies do you know?

I Substitution

I Elimination

Both are perfectly valid, but only elimination scales well to large numbers of
equations.



Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

Elimination method: in what ways can you manipulate the equations?

I Multiply an equation by a nonzero number. (scale)

I Add a multiple of one equation to another. (replacement)

I Swap two equations. (swap)



Solving Systems of Equations
Better notation

It sure is a pain to have to write x , y , z , and = over and over again.

Matrix notation: write just the numbers, in a box, instead!

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

becomes

 1 2 3 6
2 −3 2 14
3 1 −1 −2


This is called an (augmented) matrix. Our equation manipulations become
elementary row operations:

I Multiply all entries in a row by a nonzero number. (scale)

I Add a multiple of each entry of one row to the corresponding entry in
another. (row replacement)

I Swap two rows. (swap)



Row Operations, Fundamental Example

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

Start:  1 2 3 6
2 −3 2 14
3 1 −1 −2


Goal: we want our elimination method to eventually produce a system of
equations like

x = A

y = B

z = C

or in matrix form,

 1 0 0 A
0 1 0 B
0 0 1 C


So we need to do row operations that make the start matrix look like the end
one.

Strategy (preliminary): fiddle with it so we only have ones and zeros. [animated]

http://textbooks.math.gatech.edu/ila/demos/rowred1.html


Row Operations
Continued 1 2 3 6

2 −3 2 14
3 1 −1 −2


We want these to be zero.

So we subract multiples of the first row.

R2 = R2 − 2R1

 1 2 3 6
0 −7 −4 2
3 1 −1 −2


R3 = R3 − 3R1

 1 2 3 6
0 −7 −4 2
0 −5 −10 −20


 1 2 3 6

0 −7 −4 2
0 −5 −10 −20


We want these to be zero.

It would be nice if this were a 1.
We could divide by −7, but that

would produce ugly fractions.

Let’s swap the last two rows first.

R2 ←→ R3

 1 2 3 6
0 −5 −10 −20
0 −7 −4 2


R2 = R2 ÷−5

 1 2 3 6
0 1 2 4
0 −7 −4 2


R3 = R3 + 7R2

 1 2 3 6
0 1 2 4
0 0 10 30





Row Operations
Continued 1 2 3 6

0 1 2 4
0 0 10 30


We want these to be zero.

Let’s make this a 1 first.

R3 = R3 ÷ 10
 1 2 3 6

0 1 2 4
0 0 1 3


R2 = R2 − 2R3, R1 = R1 − 3R3

 1 2 0 −3
0 1 0 −2
0 0 1 3


R2 = R2 − 2R3

 1 0 0 1
0 1 0 −2
0 0 1 3


translates into

x = 1

y = −2

z = 3
Success!

Check:

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

substitute solution
1 + 2 · (−2) + 3 · 3 = 6

2 · 1 − 3 · (−2) + 2 · 3 = 14

3 · 1 + (−2) − 3 = −2
"



Row Equivalence

The process of doing row operations to a matrix does
not change the solution set of the corresponding linear
equations!

Important

Definition
Two matrices are called row equivalent if one can be obtained from the other
by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the same solution set.



A Bad Example

Example

Solve the system of equations

x + y = 2

3x + 4y = 5

4x + 5y = 9

Let’s try doing row operations: [interactive row reducer]

 1 1 2
3 4 5
4 5 9

First clear these by
subtracting multiples

of the first row.

R2 = R2 − 3R1

 1 1 2
0 1 −1
4 5 9


R3 = R3 − 4R1

 1 1 2
0 1 −1
0 1 1


 1 1 2

0 1 −1
0 1 1

Now clear this by
subtracting

the second row.

R3 = R3 − R2

 1 1 2
0 1 −1
0 0 2



http://textbooks.math.gatech.edu/ila/demos/rrinter.html?mat=1,1,2:3,4,5:4,5,9


A Bad Example
Continued

 1 1 2
0 1 −1
0 0 2

 translates into
x + y = 2

y = −1

0 = 2

In other words, the original equations

x + y = 2

3x + 4y = 5

4x + 5y = 9

have the same solutions as

x + y = 2

y = −1

0 = 2

But the latter system obviously has no solutions (there is no way to make them
all true), so our original system has no solutions either.

Definition
A system of equations is called inconsistent if it has no solution. It is
consistent otherwise.



Section 1.2

Row Reduction



Row Echelon Form

Let’s come up with an algorithm for turning an arbitrary matrix into a “solved”
matrix. What do we mean by “solved”?

A matrix is in row echelon form if

1. All zero rows are at the bottom.

2. Each leading nonzero entry of a row is to the right of the
leading entry of the row above.

3. Below a leading entry of a row, all entries are zero.

Picture: 
? ? ? ? ?
0 ? ? ? ?
0 0 0 ? ?
0 0 0 0 0

 ? = any number

? = any nonzero number

Definition
A pivot ? is the first nonzero entry of a row of a matrix. A pivot column is a
column containing a pivot of a matrix in row echelon form.



Reduced Row Echelon Form

A matrix is in reduced row echelon form if it is in row echelon
form, and in addition,

4. The pivot in each nonzero row is equal to 1.

5. Each pivot is the only nonzero entry in its column.

Picture: 
1 0 ? 0 ?
0 1 ? 0 ?
0 0 0 1 ?
0 0 0 0 0

 ? = any number

1 = pivot

Note: Echelon forms do not care whether or not a column is augmented. Just
ignore the vertical line.

Question
Can every matrix be put into reduced row echelon form only using row
operations?

Answer: Yes! Stay tuned.



Reduced Row Echelon Form
Continued

Why is this the “solved” version of the matrix? 1 0 0 1
0 1 0 −2
0 0 1 3


is in reduced row echelon form. It translates into

x = 1

y = −2

z = 3,

which is clearly the solution.

But what happens if there are fewer pivots than rows? 1 2 0 1
0 0 1 3
0 0 0 0


. . . parametrized solution set (later).



Poll

Which of the following matrices are in reduced row echelon form?

A.

(
1 0
0 2

)
B.

(
0 0 0
0 0 0

)

C.


0
1
0
0

 D.
(

0 1 0 0
)

E.
(

0 1 8 0
)

F.

(
1 17 0
0 0 1

)

Poll

Answer: B, D, E, F.

Note that A is in row echelon form though.



Summary

I Solving a system of equations means producing all values for the
unknowns that make all the equations true simultaneously.

I It is easier to solve a system of linear equations if you put all the
coefficients in an augmented matrix.

I Solving a system using the elimination method means doing elementary
row operations on an augmented matrix.

I Two systems or matrices are row-equivalent if one can be obtained from
the other by doing a sequence of elementary row operations.
Row-equivalent systems have the same solution set.

I A linear system with no solutions is called inconsistent.

I The (reduced) row echelon form of a matrix is its “solved” row-equivalent
version.



(Reduced) Row Echelon Form
Review from last time

A matrix is in row echelon form if

1. All zero rows are at the bottom.

2. Each leading nonzero entry of a row is to the right of the
leading entry of the row above.

3. Below a leading entry of a row, all entries are zero.

A matrix is in reduced row echelon form if it is in row echelon
form, and in addition,

4. The pivot in each nonzero row is equal to 1.

5. Each pivot is the only nonzero entry in its column.

Row echelon form:
? ? ? ? ?
0 ? ? ? ?
0 0 0 ? ?
0 0 0 0 0


Reduced row echelon form:

1 0 ? 0 ?
0 1 ? 0 ?
0 0 0 1 ?
0 0 0 0 0


? = pivots



Row Reduction: Theorem

Theorem
Every matrix is row equivalent to one and only one matrix in reduced row
echelon form.

We’ll give an algorithm, called row reduction or Gaussian elimination, which
demonstrates that every matrix is row equivalent to at least one matrix in
reduced row echelon form.

Note: Like echelon forms, the row reduction algorithm does not care if a
column is augmented: ignore the vertical line when row reducing.

The uniqueness statement is interesting—it means that, nomatter how you row
reduce, you always get the same matrix in reduced row echelon form.
(Assuming you only do the three legal row operations.) (And you don’t make
any arithmetic errors.)

Maybe you can figure out why it’s true!



Row Reduction Algorithm

Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st
row (if necessary).

Step 1b Scale 1st row so that its leading entry is equal to 1.

Step 1c Use row replacement so all entries below this 1 are 0.

Step 2a Swap the 2nd row with a lower one so that the leftmost nonzero entry is
in 2nd row.

Step 2b Scale 2nd row so that its leading entry is equal to 1.

Step 2c Use row replacement so all entries below this 1 are 0.

Step 3a Swap the 3rd row with a lower one so that the leftmost nonzero entry is in
3rd row.

etc.

Last Step Use row replacement to clear all entries above the pivots, starting with the
last pivot (to make life easier).

Example  0 −7 −4 2
2 4 6 12
3 1 −1 −2


[animated]

http://textbooks.math.gatech.edu/ila/demos/rowred2.html


Row Reduction
Example 0 −7 −4 2

2 4 6 12
3 1 −1 −2


Step 1a: Row swap to make this nonzero.

R1 ←→ R2

 2 4 6 12
0 −7 −4 2
3 1 −1 −2


Step 1b: Scale to make this 1.

R1 = R1 ÷ 2
 1 2 3 6

0 −7 −4 2
3 1 −1 −2


Step 1c: Subtract a multiple of
the first row to clear this.

R3 = R3 − 3R1

 1 2 3 6
0 −7 −4 2
0 −5 −10 −20


Optional: swap rows 2 and 3 to
make Step 2b easier later on.

R2 ←→ R3

 1 2 3 6
0 −5 −10 −20
0 −7 −4 2





Row Reduction
Example, continued 1 2 3 6

0 −5 −10 −20
0 −7 −4 2


Step 2a: This is already nonzero.
Step 2b: Scale to make this 1.

(There are no fractions because
of the optional step before.)

R2 = R2 ÷−5
 1 2 3 6

0 1 2 4
0 −7 −4 2


Step 2c: Add 7 times
the second row to clear this.

R3 = R3 + 7R2

 1 2 3 6
0 1 2 4
0 0 10 30


Note: Step 2 never messes up the first (nonzero) column of the matrix,
because it looks like this:  1 ? ? ?

0 ? ? ?
0 ? ? ?

“Active” row



Row Reduction
Example, continued 1 2 3 6

0 1 2 4
0 0 10 30


Step 3a: This is already nonzero.
Step 3b: Scale to make this 1.

R3 = R3 ÷ 10
 1 2 3 6

0 1 2 4
0 0 1 3



Note: Step 3 never messes up the columns to the left.
Note: The matrix is now in row echelon form! 1 2 3 6

0 1 2 4
0 0 1 3


Last step: Add multiples of
the third row to clear these.

R2 = R2 − 2R3

 1 2 3 6
0 1 0 −2
0 0 1 3


R1 = R1 − 3R3

 1 2 0 −3
0 1 0 −2
0 0 1 3


Last step: Add −2 times
the third row to clear this.

R1 = R1 − 2R2

 1 0 0 1
0 1 0 −2
0 0 1 3





Row Reduction
Example, continued

Success! The reduced row echelon form is 1 0 0 1
0 1 0 −2
0 0 1 3

 =⇒


x = 1

y = −2

z = 3



Recap


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


Get a 1 here 

1 ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


Clear down 

1 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?


Get a 1 here 

1 ? ? ?
0 1 ? ?
0 ? ? ?
0 ? ? ?


Clear down


1 ? ? ?
0 1 ? ?
0 0 0 ?
0 0 0 ?


(maybe these are already zero)

1 ? ? ?
0 1 ? ?
0 0 0 ?
0 0 0 ?


Get a 1 here

1 ? ? ?
0 1 ? ?
0 0 0 1
0 0 0 ?


Clear down 

1 ? ? ?
0 1 ? ?
0 0 0 1
0 0 0 0


Matrix is in REF


1 ? ? ?
0 1 ? ?
0 0 0 1
0 0 0 0


Clear up 

1 ? ? 0
0 1 ? 0
0 0 0 1
0 0 0 0


Clear up 

1 0 ? 0
0 1 ? 0
0 0 0 1
0 0 0 0


Matrix is in RREF

Profit?



Row Reduction
Another example

The linear system

2x + 10y = −1

3x + 15y = 2
gives rise to the matrix

(
2 10 −1
3 15 2

)
.

Let’s row reduce it: [interactive row reducer](
2 10 −1
3 15 2

) R1 = R1 ÷ 2 (
1 5 − 1

2

3 15 2

)
(Step 1b)

R2 = R2 − 3R1
(

1 5 − 1
2

0 0 7
2

)
(Step 1c)

R2 = R2 × 2
7

(
1 5 − 1

2

0 0 1

)
(Step 2b)

R1 = R1 + 1
2
R2

(
1 5 0
0 0 1

)
(Step 2c)

The row reduced matrix(
1 5 0
0 0 1

)
corresponds to the
inconsistent system

x + 5y = 0

0 = 1.

http://textbooks.math.gatech.edu/ila/demos/rrinter.html?mat=2,10,-1:3,15,2


Inconsistent Matrices

Question
What does an augmented matrix in reduced row echelon form look like, if its
system of linear equations is inconsistent?

Answer:  1 0 ? ? 0
0 1 ? ? 0
0 0 0 0 1



An augmented matrix corresponds to an inconsistent system
of equations if and only if the last (i.e., the augmented)
column is a pivot column.



Section 1.3

Parametric Form



Another Example

The linear system

2x + y + 12z = 1

x + 2y + 9z = −1
gives rise to the matrix

(
2 1 12 1
1 2 9 −1

)
.

Let’s row reduce it: [interactive row reducer](
2 1 12 1
1 2 9 −1

) R1 ←→ R2
(

1 2 9 −1
2 1 12 1

)
(Optional)

R2 = R2 − 2R1
(

1 2 9 −1
0 −3 −6 3

)
(Step 1c)

R2 = R2 ÷−3 (
1 2 9 −1
0 1 2 −1

)
(Step 2b)

R1 = R1 − 2R2
(

1 0 5 1
0 1 2 −1

)
(Step 2c)

The row reduced matrix(
1 0 5 1
0 1 2 −1

)
corresponds to the

linear system

{
x + 5z = 1

y + 2z = −1

http://textbooks.math.gatech.edu/ila/demos/rrinter.html?mat=2,1,12,1:1,2,9,-1


Another Example
Continued

The system
x + 5z = 1

y + 2z = −1

comes from a matrix in reduced row echelon form. Are we done? Is the system
solved?

Yes! Rewrite:
x = 1 − 5z

y = −1 − 2z

For any value of z , there is exactly one value of x and y that makes the
equations true. But z can be anything we want!

So we have found the solution set: it is all values x , y , z where

x = 1 − 5z

y = −1 − 2z

(z = z)

for z any real number.

This is called the parametric form for the solution. [interactive picture]

For instance, (1,−1, 0) and (−4,−3, 1) are solutions.

http://textbooks.math.gatech.edu/ila/demos/parametric1.html


Free Variables

Definition
Consider a consistent linear system of equations in the variables x1, . . . , xn. Let
A be a row echelon form of the matrix for this system.

We say that xi is a free variable if its corresponding column in A is not a pivot
column.

1. You can choose any value for the free variables in a
(consistent) linear system.

2. Free variables come from columns without pivots in a
matrix in row echelon form.

Important

In the previous example, z was free because the reduced row echelon form
matrix was (

1 0 5 4
0 1 2 −1

)
.

In this matrix: (
1 ? 0 ? ?
0 0 1 ? ?

)
the free variables are x2 and x4. (What about the last column?)



One More Example

The reduced row echelon form of the matrix for a linear system in x1, x2, x3, x4 is(
1 0 0 3 2
0 0 1 4 −1

)
The free variables are x2 and x4: they are the ones whose columns are not pivot
columns.

This translates into the system of equations{
x1 + 3x4 = 2

x3 + 4x4 = −1
=⇒ x1 = 2 − 3x4

x3 = −1 − 4x4.

What happened to x2? What is it allowed to be? Anything! The general
solution is

(x1, x2, x3, x4) = (2− 3x4, x2, −1− 4x4, x4)

for any values of x2 and x4. For instance, (2, 0,−1, 0) is a solution
(x2 = x4 = 0), and (5, 1, 3,−1) is a solution (x2 = 1, x4 = −1).

The boxed equation is called the parametric form of the general
solution to the system of equations. It is obtained by moving all
free variables to the right-hand side of the =.



Yet Another Example

The linear system

x + y + z = 1 has matrix form
(

1 1 1 1
)
.

This is in reduced row echelon form. The free variables are y and z . The
parametric form of the general solution is

x = 1− y − z .

Rearranging:
(x , y , z) = (1− y − z , y , z),

where y and z are arbitrary real numbers. This was an example in the second
lecture!

[interactive]

http://textbooks.math.gatech.edu/ila/demos/plane.html


Poll

Is it possible for a system of linear equations to
have exactly two solutions?

Poll



Trichotomy

There are three possibilities for the reduced row echelon form of the augmented
matrix of a linear system.

1. The last column is a pivot column.
In this case, the system is inconsistent. There are zero solutions, i.e. the
solution set is empty. Picture: 1 0 0

0 1 0
0 0 1


2. Every column except the last column is a pivot column.

In this case, the system has a unique solution. Picture: 1 0 0 ?
0 1 0 ?
0 0 1 ?


3. The last column is not a pivot column, and some other column isn’t either.

In this case, the system has infinitely many solutions, corresponding to the
infinitely many possible values of the free variable(s). Picture:(

1 ? 0 ? ?
0 0 1 ? ?

)



Summary

I Row reduction is an algorithm for solving a system of linear equations
represented by an augmented matrix.

I The goal of row reduction is to put a matrix into (reduced) row echelon
form, which is the “solved” version of the matrix.

I An augmented matrix corresponds to an inconsistent system if and only if
there is a pivot in the augmented column.

I Columns without pivots in the RREF of a matrix correspond to free
variables. You can assign any value you want to the free variables, and
you get a unique solution.

I A linear system has zero, one, or infinitely many solutions.



Chapter 2

Systems of Linear Equations: Geometry



Motivation

We want to think about the algebra in linear algebra (systems of equations and
their solution sets) in terms of geometry (points, lines, planes, etc).

x − 3y = −3

2x + y = 8

This will give us better insight into the properties of systems of equations and
their solution sets.

Remember: I expect you to be able to draw pictures!



Section 2.1

Vectors



Points and Vectors

We have been drawing elements of Rn as points in the line, plane, space, etc.
We can also draw them as arrows.

Definition

A point is an element of Rn, drawn as a point
(a dot).

the point (1, 3)

A vector is an element of Rn, drawn as an arrow.
When we think of an element of Rn as a vector,
we’ll usually write it vectically, like a matrix with
one column:

v =

(
1
3

)
.

[interactive]

the vector
(1

3

)

The difference is purely psychological: points and vectors are just lists of
numbers.

http://textbooks.math.gatech.edu/ila/demos/vector.html


Points and Vectors

So why make the distinction?

A vector need not start at the origin: it can be located anywhere! In other
words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector

(
1
2

)
.

However, unless otherwise specified, we’ll as-
sume a vector starts at the origin.



Vector Algebra

Definition

I We can add two vectors together:a
b
c

+

x
y
z

 =

a + x
b + y
c + z

 .

I We can multiply, or scale, a vector by a real number c:

c

x
y
z

 =

c · x
c · y
c · z

 .

We call c a scalar to distinguish it from a vector. If v is a vector and c is
a scalar, cv is called a scalar multiple of v .

(And likewise for vectors of length n.) For instance,1
2
3

+

4
5
6

 =

5
7
9

 and − 2

1
2
3

 =

−2
−4
−6

 .



Vector Addition and Subtraction: Geometry

v

w

w

v

v
+
w

5 = 1 + 4 = 4 + 1

5
=

2
+

3
=

3
+

2
The parallelogram law for vector addition
Geometrically, the sum of two vectors v ,w is ob-
tained as follows: place the tail of w at the head of
v . Then v + w is the vector whose tail is the tail of
v and whose head is the head of w . Doing this both
ways creates a parallelogram. For example,(

1
3

)
+

(
4
2

)
=

(
5
5

)
.

Why? The width of v + w is the sum of the widths,
and likewise with the heights. [interactive]

v

w

v −
w

Vector subtraction
Geometrically, the difference of two vectors v ,w is
obtained as follows: place the tail of v and w at the
same point. Then v −w is the vector from the head
of w to the head of v . For example,(

1
4

)
−
(

4
2

)
=

(
−3
2

)
.

Why? If you add v−w to w , you get v . [interactive]

This works in higher dimensions too!

http://textbooks.math.gatech.edu/ila/demos/vector-add.html
http://textbooks.math.gatech.edu/ila/demos/vector-sub.html


Scalar Multiplication: Geometry

Scalar multiples of a vector
These have the same direction but a different length.

Some multiples of v .

v

2v

− 1
2
v

0v

v =

(
1
2

)
2v =

(
2
4

)
−1

2
v =

(
− 1

2

−1

)
0v =

(
0
0

)

All multiples of v .

[interactive]

So the scalar multiples of v form a line.

http://textbooks.math.gatech.edu/ila/demos/vector-mul.html


Linear Combinations

We can add and scalar multiply in the same equation:

w = c1v1 + c2v2 + · · ·+ cpvp

where c1, c2, . . . , cp are scalars, v1, v2, . . . , vp are vectors in Rn, and w is a
vector in Rn.

Definition
We call w a linear combination of the vectors v1, v2, . . . , vp. The scalars
c1, c2, . . . , cp are called the weights or coefficients.

Example

v

w

Let v =

(
1
2

)
and w =

(
1
0

)
.

What are some linear combinations of v and w?

I v + w

I v − w

I 2v + 0w

I 2w

I −v
[interactive: 2 vectors] [interactive: 3 vectors]

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,2&v2=1,0&range=5&captions=combo&nomove=true&labels=v,w
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,-1,1&v2=1,1,-1&v3=-1,1,4&range=5&captions=combo&nomove=true


Poll

Is there any vector in R2 that is not a linear
combination of v and w?

Poll

No: in fact, every vector in R2 is a combination of v and w .

v

w

(The purple lines are to help measure how much of v and w you need to get to
a given point.)



More Examples

v

What are some linear combinations of v =

(
2
1

)
?

I 3
2
v

I − 1
2
v

I . . .

What are all linear combinations of v?

All vectors cv for c a real number. I.e., all scalar
multiples of v . These form a line.

v

w

Question
What are all linear combinations of

v =

(
2
2

)
and w =

(
−1
−1

)
?

Answer: The line which contains both vectors.

What’s different about this example and the one on
the poll? [interactive]

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,2&v2=-1,-1&range=5&labels=v,w&grid=disabled&captions=combo


Section 2.2

Vector Equations and Spans



Systems of Linear Equations

Solve the following system of linear equations:

x − y = 8

2x − 2y = 16

6x − y = 3.

We can write all three equations at once as vectors: x − y

2x − 2y

6x − y

 =

 8
16
3

 .

We can write this as a linear combination:

x

1
2
6

+ y

−1
−2
−1

 =

 8
16
3

 .

So we are asking:

Question: Is

 8
16
3

 a linear combination of

1
2
6

 and

−1
−2
−1

?



Systems of Linear Equations
Continued

x − y = 8

2x − 2y = 16

6x − y = 3

matrix form

 1 − 1 8
2 − 2 16
6 − 1 3


row reduce

 1 0 −1
0 1 −9
0 0 0


solution x = −1

y = −9
Conclusion:

−

1
2
6

− 9

−1
−2
−1

 =

 8
16
3


[interactive] ←− (this is the picture of a consistent linear system)

What is the relationship between the vectors in the linear combination and the
matrix form of the linear equation? They have the same columns!

Shortcut: You can go directly between augmented matrices and vector
equations.

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=8,16,3&tlabel=b&range=20&camera=3,.5,1.5


Vector Equations and Linear Equations

The vector equation

x1v1 + x2v2 + · · ·+ xpvp = b,

where v1, v2, . . . , vp, b are vectors in Rn and x1, x2, . . . , xp are
scalars, has the same solution set as the linear system with aug-
mented matrix  | | | |

v1 v2 · · · vp b
| | | |

 ,

where the vi ’s and b are the columns of the matrix.

Summary

So we now have (at least) two equivalent ways of thinking about linear systems
of equations:

1. Augmented matrices.

2. Linear combinations of vectors (vector equations).

The last one is more geometric in nature.



Span

It is important to know what are all linear combinations of a set of vectors
v1, v2, . . . , vp in Rn: it’s exactly the collection of all b in Rn such that the
vector equation (in the unknowns x1, x2, . . . , xp)

x1v1 + x2v2 + · · ·+ xpvp = b

has a solution (i.e., is consistent).

Definition
Let v1, v2, . . . , vp be vectors in Rn. The span of v1, v2, . . . , vp is the collection
of all linear combinations of v1, v2, . . . , vp, and is denoted Span{v1, v2, . . . , vp}.
In symbols:

Span{v1, v2, . . . , vp} =
{
x1v1 + x2v2 + · · ·+ xpvp

∣∣ x1, x2, . . . , xp in R
}

.

Synonyms: Span{v1, v2, . . . , vp} is the subset spanned by or generated by
v1, v2, . . . , vp.

This is the first of several definitions in this class that you simply must
learn. I will give you other ways to think about Span, and ways to draw
pictures, but this is the definition. Having a vague idea what Span means
will not help you solve any exam problems!

“such that”“the set of”



Span
Continued

Now we have several equivalent ways of making the same statement:

1. A vector b is in the span of v1, v2, . . . , vp.

2. The vector equation

x1v1 + x2v2 + · · ·+ xpvp = b

has a solution.

3. The linear system with augmented matrix | | | |
v1 v2 · · · vp b
| | | |


is consistent.

[interactive example] ←− (this is the picture of an inconsistent linear system)

Note: equivalent means that, for any given list of vectors v1, v2, . . . , vp, b,
either all three statements are true, or all three statements are false.

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=2,-2,0&tlabel=b&range=8&camera=3,.5,1.5


Pictures of Span

Drawing a picture of Span{v1, v2, . . . , vp} is the same as drawing a picture of
all linear combinations of v1, v2, . . . , vp.

Span{v}

v

Span{v ,w}

v

w

Span{v ,w}

v

w

[interactive: span of two vectors in R2]

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,2&v2=1,0&range=5&labels=v,w


Pictures of Span
In R3

Span{v}

v

Span{v ,w}

v

w

v

w
u

Span{u, v ,w} Span{u, v ,w}

v

w

u

[interactive: span of two vectors in R3] [interactive: span of three vectors in R3]

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=5,3,-2&v2=3,-4,1&labels=v,w&range=8
http://textbooks.math.gatech.edu/ila/demos/spans.html?labels=u,v,w&range=8


Poll

How many vectors are in Span


0

0
0

?

A. Zero

B. One

C. Infinity

Poll

In general, it appears that Span{v1, v2, . . . , vp} is the smallest “linear space”
(line, plane, etc.) containing the origin and all of the vectors v1, v2, . . . , vp.

We will make this precise later.



Summary

The whole lecture was about drawing pictures of systems of linear equations.

I Points and vectors are two ways of drawing elements of Rn. Vectors are
drawn as arrows.

I Vector addition, subtraction, and scalar multiplication have geometric
interpretations.

I A linear combination is a sum of scalar multiples of vectors. This is also a
geometric construction, which leads to lots of pretty pictures.

I The span of a set of vectors is the set of all linear combinations of those
vectors. It is also fun to draw.

I A system of linear equations is equivalent to a vector equation, where the
unknowns are the coefficients of a linear combination.



Section 2.3

Matrix Equations



Matrix × Vector

Let A be an m × n matrix

the first number is
the number of rows

the second number is
the number of columns

A =

 | | |
v1 v2 · · · vn
| | |

 with columns v1, v2, . . . , vn

Definition
The product of A with a vector x in Rn is the linear combination

Ax =

 | | |
v1 v2 · · · vn
| | |



x1

x2

...
xn

 def
= x1v1 + x2v2 + · · ·+ xnvn.

this means the equality
is a definition

these must be equalThe output is a vector in Rm.

Note that the number of columns of A has to equal the number of rows of x .

Example (
4 5 6
7 8 9

)1
2
3

 = 1

(
4
7

)
+ 2

(
5
8

)
+ 3

(
6
9

)
=

(
32
50

)
.



Matrix Equations
An example

Question
Let v1, v2, v3 be vectors in R3. How can you write the vector equation

2v1 + 3v2 − 4v3 =

7
2
1


in terms of matrix multiplication?

Answer: Let A be the matrix with colums v1, v2, v3, and let x be the vector
with entries 2, 3,−4. Then

Ax =

 | | |
v1 v2 v3

| | |

 2
3
−4

 = 2v1 + 3v2 − 4v3,

so the vector equation is equivalent to the matrix equation

Ax =

7
2
1

 .



Matrix Equations
In general

Let v1, v2, . . . , vn, and b be vectors in Rm. Consider the vector equation

x1v1 + x2v2 + · · ·+ xnvn = b.

It is equivalent to the matrix equation

Ax = b

where

A =

 | | |
v1 v2 · · · vn
| | |

 and x =


x1

x2

...
xn

 .

Conversely, if A is any m × n matrix, then

Ax = b
is equivalent to the

vector equation
x1v1 + x2v2 + · · ·+ xnvn = b

where v1, . . . , vn are the columns of A, and x1, . . . , xn are the entries of x .



Linear Systems, Vector Equations, Matrix Equations, . . .

We now have four equivalent ways of writing (and thinking about) linear
systems:

1. As a system of equations:

2x1 + 3x2 = 7

x1 − x2 = 5

2. As an augmented matrix: (
2 3 7
1 −1 5

)
3. As a vector equation (x1v1 + · · ·+ xnvn = b):

x1

(
2
1

)
+ x2

(
3
−1

)
=

(
7
5

)
4. As a matrix equation (Ax = b):(

2 3
1 −1

)(
x1

x2

)
=

(
7
5

)
In particular, all four have the same solution set.

We will move back and
forth freely between these
over and over again, for
the rest of the semester.
Get comfortable with them
now!



Matrix × Vector
Another way

Definition
A row vector is a matrix with one row. The product of a row vector of length
n and a (column) vector of length n is

(
a1 · · · an

)x1

...
xn

 def
= a1x1 + · · ·+ anxn.

This is a scalar.

If A is an m × n matrix with rows r1, r2, . . . , rm, and x is a vector in Rn, then

Ax =


— r1 —
— r2 —

...
— rm —

 x =


r1x
r2x

...
rmx


This is a vector in Rm (again).



Matrix × Vector
Both ways

Example(
4 5 6
7 8 9

)1
2
3

 =

( 4 5 6 )

(
1
2
3

)
( 7 8 9 )

(
1
2
3

) =

(
4 · 1 + 5 · 2 + 6 · 3
7 · 1 + 8 · 2 + 9 · 3

)
=

(
32
50

)
.

Note this is the same as before:(
4 5 6
7 8 9

)1
2
3

 = 1

(
4
7

)
+ 2

(
5
8

)
+ 3

(
6
9

)
=

(
1 · 4 + 2 · 5 + 3 · 6
1 · 7 + 2 · 8 + 3 · 9

)
=

(
32
50

)
.

Now you have two ways of computing Ax .

In the second, you calculate Ax one entry at a time.

The second way is usually the most convenient, but we’ll use
both.

In engineering, the first way corresponds to “superposition of states”, and the
second is “taking a measurement”.



Spans and Solutions to Equations

Let A be a matrix with columns v1, v2, . . . , vn:

A =

 | | |
v1 v2 · · · vn
| | |



Ax = b has a solution

⇐⇒ there exist x1, . . . , xn such that A


x1

x2

...
xn

 = b

⇐⇒ there exist x1, . . . , xn such that x1v1 + · · ·+ xnvn = b

⇐⇒ b is a linear combination of v1, . . . , vn

⇐⇒ b is in the span of the columns of A.

Very Important Fact That Will Appear on Every Midterm and the Final

The last condition is geometric.

“if and only if”



Spans and Solutions to Equations
Example

Question

Let A =

 2 1
−1 0

1 −1

. Does the equation Ax =

0
2
2

 have a solution?

[interactive]

v1

v2v2

bSpan{v1, v2}

Columns of A:

v1 =

 2
−1
1

 v2 =

 1
0
−1


Target vector:

b =

0
2
2



Is b contained in the span of the columns of A? It sure doesn’t look like it.

Conclusion: Ax = b is inconsistent.

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,-1,1&v2=1,0,-1&target=0,2,2&tlabel=b&range=5


Spans and Solutions to Equations
Example, continued

Question

Let A =

 2 1
−1 0

1 −1

. Does the equation Ax =

0
2
2

 have a solution?

Answer: Let’s check by solving the matrix equation using row reduction.

The first step is to put the system into an augmented matrix. 2 1 0
−1 0 2

1 −1 2

 row reduce

 1 0 0
0 1 0
0 0 1


The last equation is 0 = 1, so the system is inconsistent.

In other words, the matrix equation 2 1
−1 0

1 −1

 x =

0
2
2


has no solution, as the picture shows.



Spans and Solutions to Equations
Example

Question

Let A =

 2 1
−1 0

1 −1

. Does the equation Ax =

 1
−1
2

 have a solution?

[interactive]

v1

v2v2

b

Span{v1, v2}

Columns of A:

v1 =

 2
−1
1

 v2 =

 1
0
−1


Target vector:

b =

 1
−1
2


Is b contained in the span of the columns of A? It looks like it: in fact,

b = 1v1 + (−1)v2 =⇒ x =

(
1
−1

)
.

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,-1,1&v2=1,0,-1&target=1,-1,2&tlabel=b&range=5


Spans and Solutions to Equations
Example, continued

Question

Let A =

 2 1
−1 0

1 −1

. Does the equation Ax =

 1
−1
2

 have a solution?

Answer: Let’s do this systematically using row reduction. 2 1 1
−1 0 −1

1 −1 2

 row reduce

 1 0 1
0 1 −1
0 0 0


This gives us

x = 1 y = −1.

This is consistent with the picture on the previous slide:

1

 2
−1
1

− 1

 1
0
−1

 =

 1
−1
2

 or A

(
1
−1

)
=

 1
−1
2

 .



Poll

Which of the following true statements can be checked by eye-
balling them, without row reduction?

A.

 3 0 0 0
3 10 −1 1
4 20 −2 2

 is consistent.

B.

 3 0 0 0
3 5 6 1
4 7 8 2

 is consistent.

C.

 3 0 0 0
3 1 0 1

4 0
√

2 2

 is consistent.

D.

 5 6 3 0
7 8 3 1
0 0 4 2

 is consistent.

Poll



When Solutions Always Exist

Here are criteria for a linear system to always have a solution.

Theorem
Let A be an m × n (non-augmented) matrix. The following are equivalent:

recall that this means
that for given A, either they’re

all true, or they’re all false

1. Ax = b has a solution for all b in Rm.

2. The span of the columns of A is all of Rm.

3. A has a pivot in each row.

Why is (1) the same as (2)? This was the Very Important box from before.

Why is (1) the same as (3)? If A has a pivot in each row then its reduced row
echelon form looks like this: 1 0 ? 0 ?

0 1 ? 0 ?
0 0 0 1 ?

 and (A | b )
reduces to this:

 1 0 ? 0 ? ?
0 1 ? 0 ? ?
0 0 0 1 ? ?

 .

There’s no b that makes it inconsistent, so there’s always a solution. If A
doesn’t have a pivot in each row, then its reduced form looks like this: 1 0 ? 0 ?

0 1 ? 0 ?
0 0 0 0 0

 and this can be
made

inconsistent:

 1 0 ? 0 ? 0
0 1 ? 0 ? 0
0 0 0 0 0 16

 .



When Solutions Always Exist
Continued

Theorem
Let A be an m × n (non-augmented) matrix. The following are equivalent:

1. Ax = b has a solution for all b in Rm.

2. The span of the columns of A is all of Rm.

3. A has a pivot in each row.

In the following demos, the violet region is the span of the columns of A. This
is the same as the set of all b such that Ax = b has a solution.

[example where the criteria are satisfied]

[example where the criteria are not satisfied]

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,-1,1&v2=1,0,-1&v3=-1,2,2&range=5&capopt=matrix
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,-1,1&v2=1,0,-1&v3=1,-1,2&range=5&capopt=matrix


Properties of the Matrix–Vector Product

Let c be a scalar, u, v be vectors, and A a matrix.

I A(u + v) = Au + Av

I A(cv) = cAv

For instance, A(3u − 7v) = 3Au − 7Av .

Consequence: If u and v are solutions to Ax = 0, then so is every vector in
Span{u, v}. Why?{

Au = 0

Av = 0
=⇒ A(xu + yv) = xAu + yAv = x0 + y0 = 0.

(Here 0 means the zero vector.)

The set of solutions to Ax = 0 is a span.

Important



Summary

I We have four equivalent ways of writing a system of linear equations:
1. As a system of equations.
2. As an augmented matrix.
3. As a vector equation.
4. As a matrix equation Ax = b.

I Ax = b is consistent if and only if b is in the span of the columns of A.
The latter condition is geometric: you can draw pictures of it.

I Ax = b is consistent for all b in Rm if and only if the columns of A span
Rm.



Section 2.4

Solution Sets



Plan For Today

Today we will learn to describe and draw the solution set of an arbitrary system
of linear equations Ax = b, using spans.

Ax = b

Recall: the solution set is the collection of all vectors x such that Ax = b is
true.

Last time we discussed the set of vectors b for which Ax = b has a solution.

We also described this set using spans, but it was a different problem.



Homogeneous Systems

Everything is easier when b = 0, so we start with this case.

Definition
A system of linear equations of the form Ax = 0 is called homogeneous.

These are linear equations where everything to the right of the = is zero.
The opposite is:

Definition
A system of linear equations of the form Ax = b with b 6= 0 is called
inhomogeneous.

A homogeneous system always has the solution x = 0. This is called the
trivial solution. The nonzero solutions are called nontrivial.

Ax = 0 has a nontrivial solution

⇐⇒ there is a free variable

⇐⇒ A has a column with no pivot.

Observation



Homogeneous Systems
Example

Question
What is the solution set of Ax = 0, where

A =

 1 3 4
2 −1 2
1 0 1

?

We know how to do this: first form an augmented matrix and row reduce. 1 3 4 0
2 −1 2 0
1 0 1 0

 row reduce

 1 0 0 0
0 1 0 0
0 0 1 0

 .

The only solution is the trivial solution x = 0.

Since the last column (everything to the right of the =) was zero
to begin, it will always stay zero! So it’s not really necessary to
write augmented matrices in the homogeneous case.

Observation



Homogeneous Systems
Example

Question
What is the solution set of Ax = 0, where

A =

(
1 −3
2 −6

)
?

(
1 −3
2 −6

)
row reduce

(
1 −3
0 0

)
equation

x1 − 3x2 = 0

parametric form {
x1 = 3x2

x2 = x2

parametric vector form
x =

(
x1

x2

)
= x2

(
3
1

)
.

This last equation is called the parametric vector form of the solution.

It is obtained by listing equations for all the variables, in order, including the
free ones, and making a vector equation.



Homogeneous Systems
Example, continued

Question
What is the solution set of Ax = 0, where

A =

(
1 −3
2 −6

)
?

Answer: x = x2

(
3
1

)
for any x2 in R. The solution set is Span

{(
3
1

)}
.

Ax = 0

[interactive]

Note: one free variable means the solution set is a line in R2 (2 = # variables
= # columns).

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?lock=true&x=3,1&mat=1,-3:2,-6&range2=5


Homogeneous Systems
Example

Question
What is the solution set of Ax = 0, where

A =

(
1 −1 2
−2 2 −4

)
?

(
1 −1 2
2 −2 4

)
row reduce

(
1 −1 2
0 0 0

)
equation

x1 − x2 + 2x3 = 0

parametric form


x1 = x2 − 2x3

x2 = x2

x3 = x3

parametric vector form
x =

x1

x2

x3

 = x2

1
1
0

+ x3

−2
0
1

.



Homogeneous Systems
Example, continued

Question
What is the solution set of Ax = 0, where

A =

(
1 −1 2
−2 2 −4

)
?

Answer: Span


1

1
0

,
−2

0
1

 .

[interactive]

Ax = 0

Note: two free variables means the solution set is a plane in R3 (3 = #
variables = # columns).

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?lock=true&x=0,0,0


Homogeneous Systems
Example

Question
What is the solution set of Ax = 0, where A = 1 2 0 −1

−2 −3 4 5
2 4 0 −2

 row reduce

 1 0 −8 −7
0 1 4 3
0 0 0 0


equations {

x1 − 8x3 − 7x4 = 0

x2 + 4x3 + 3x4 = 0

parametric form


x1 = 8x3 + 7x4

x2 = −4x3 − 3x4

x3 = x3

x4 = x4

parametric vector form
x =


x1

x2

x3

x4

 = x3


8
−4
1
0

+ x4


7
−3
0
1

.



Homogeneous Systems
Example, continued

Question
What is the solution set of Ax = 0, where

A =

 1 2 0 −1
−2 −3 4 5

2 4 0 −2

?

Answer: Span




8
−4
1
0

 ,


7
−3
0
1


 .

[not pictured here]

Note: two free variables means the solution set is a plane in R4 (4 = #
variables = # columns).



Parametric Vector Form
Homogeneous systems

Let A be an m × n matrix. Suppose that the free variables in the homogeneous
equation Ax = 0 are, for example, x3, x6, and x8.

1. Find the reduced row echelon form of A.

2. Write the parametric form of the solution set, including the redundant
equations x3 = x3, x6 = x6, and x8 = x8. Put equations for all of the xi in
order.

3. Make a single vector equation from these equations by putting x3, x6, and
x8 as coefficients of vectors v3, v6, and v8, respectively.

The solutions to Ax = 0 will then be expressed in the form

x = x3v3 + x6v6 + x8v8

for some vectors v3, v6, v8 in Rn, and any scalars x3, x6, x8.

In this case, the solution set to Ax = 0 is

Span
{
v3, v6, v8

}
.

The equation above is called the parametric vector form of the solution.

We emphasize the fact that the set of solutions to Ax = 0 is a span.



Poll

How many solutions can there be to a homogeneous sys-
tem with more equations than variables?

A. 0

B. 1

C. ∞

Poll

The trivial solution is always a solution to a homogeneous system, so answer A
is impossible.

This matrix has only one solution to Ax = 0: [interactive]

A =

 1 0
0 1
0 0


This matrix has infinitely many solutions to Ax = 0: [interactive]

A =

 1 1
0 0
0 0



http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?x=0,0&mat=1,0:0,1:0,0&closed=true&range2=5
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?x=0,0&mat=1,1:0,0:0,0&lock=true&closed=true&range2=5


Inhomogeneous Systems
Example

Question
What is the solution set of Ax = b, where

A =

(
1 −3
2 −6

)
and b =

(
−3
−6

)
?

(
1 −3 −3
2 −6 −6

)
row reduce

(
1 −3 −3
0 0 0

)
equation

x1 − 3x2 = −3

parametric form {
x1 = 3x2 − 3

x2 = x2 + 0

parametric vector form
x =

(
x1

x2

)
= x2

(
3
1

)
+

(
−3
0

)
.

The only difference from the homogeneous case is the constant vector
p =

(−3
0

)
.

Note that p is itself a solution: take x2 = 0.



Inhomogeneous Systems
Example, continued

Question
What is the solution set of Ax = b, where

A =

(
1 −3
2 −6

)
and b =

(
−3
−6

)
?

Answer: x = x2

(
3
1

)
+

(
−3
0

)
for any x2 in R.

This is a translate of Span

{(
3
1

)}
: it is the parallel line through p =

(
−3
0

)
.

Ax = 0

Ax = b

p

It can be written

Span

{(
3
1

)}
+

(
−3
0

)
.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?x=-3,0&mat=1,-3:2,-6&lock=true&closed=true


Inhomogeneous Systems
Example

Question
What is the solution set of Ax = b, where

A =

(
1 −1 2
−2 2 −4

)
and b =

(
1
−2

)
?

(
1 −1 2 1
−2 2 −4 −2

)
row reduce

(
1 −1 2 1
0 0 0 0

)
equation

x1 − x2 + 2x3 = 1

parametric form


x1 = x2 − 2x3 + 1

x2 = x2

x3 = x3

parametric vector form
x =

x1

x2

x3

 = x2

1
1
0

+ x3

−2
0
1

+

1
0
0

.



Inhomogeneous Systems
Example, continued

Question
What is the solution set of Ax = b, where

A =

(
1 −1 2
−2 2 −4

)
and b =

(
1
−2

)
?

Answer: Span


1

1
0

 ,

−2
0
1

+

1
0
0

.

p

Ax = b

The solution set is a translate of

Span


1

1
0

,
−2

0
1

 :

it is the parallel plane through

p =

1
0
0

 .

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?x=1,0,0&lock=true&closed=true


Homogeneous vs. Inhomogeneous Systems

The set of solutions to Ax = b, if it is nonempty, is obtained
by taking one specific or particular solution p to Ax = b, and
adding all solutions to Ax = 0.

Key Observation

Why? If Ap = b and Ax = 0, then

A(p + x) = Ap + Ax = b + 0 = b,

so p + x is also a solution to Ax = b.

We know the solution set of Ax = 0 is a span. So the solution set of Ax = b is
a translate of a span: it is parallel to a span. (Or it is empty.)

Ax = 0

Ax = b

This works for any specific so-
lution p: it doesn’t have to be
the one produced by finding the
parametric vector form and set-
ting the free variables all to zero,
as we did before.

[interactive 1] [interactive 2]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0,-1:0,1,1:1,1,0


Solution Sets and Spans of Columns

Let A be an m× n matrix. There are now two completely different
things you know how to describe using spans:

I The solution set: for fixed b, this is all x such that Ax = b.
I This is a span if b = 0, or a translate of a span in general (if

it’s consistent).
I Lives in Rn.
I Computed by finding the parametric vector form.

I The span of the columns: this is all b such that Ax = b is
consistent.

I This is the span of the columns of A.
I Lives in Rm.

Very Important

Don’t confuse these two geometric objects!

Much of the first midterm tests whether you understand both.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html


Summary

I The solution set to a homogeneous system Ax = 0 is a span. It always
contains the trivial solution x = 0.

I The solution set to a nonhomogeneous system Ax = b is either empty, or
it is a translate of a span: namely, it is a translate of the solution set of
Ax = 0.

I The solution set to Ax = b can be expressed as a translate of a span by
computing the parametric vector form of the solution.

I The solution set to Ax = b and the span of the columns of A (from the
previous lecture) are two completely different things, and you have to
understand them separately.



Section 2.5

Linear Independence



Motivation

Sometimes the span of a set of vectors is “smaller” than you expect from the
number of vectors.

Span{v ,w}

v

w

Span{u, v ,w}

v

w

u

This means that (at least) one of the vectors is redundant: you’re using “too
many” vectors to describe the span.

Notice in each case that one vector in the set is already in the span of the
others—so it doesn’t make the span bigger.

Today we will formalize this idea in the concept of linear (in)dependence.



Linear Independence

Definition
A set of vectors {v1, v2, . . . , vp} in Rn is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution x1 = x2 = · · · = xp = 0. The set {v1, v2, . . . , vp} is
linearly dependent otherwise.

In other words, {v1, v2, . . . , vp} is linearly dependent if there exist numbers
x1, x2, . . . , xp, not all equal to zero, such that

x1v1 + x2v2 + · · ·+ xpvp = 0.

This is called a linear dependence relation or an equation of linear
dependence.

Like span, linear (in)dependence is another one of those big vocabulary
words that you absolutely need to learn. Much of the rest of the course
will be built on these concepts, and you need to know exactly what they
mean in order to be able to answer questions on quizzes and exams (and
solve real-world problems later on).



Linear Independence

Definition
A set of vectors {v1, v2, . . . , vp} in Rn is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution x1 = x2 = · · · = xp = 0. The set {v1, v2, . . . , vp} is
linearly dependent otherwise.

Note that linear (in)dependence is a notion that applies
to a collection of vectors, not to a single vector, or to
one vector in the presence of some others.



Checking Linear Independence

Question: Is


1

1
1

 ,

 1
−1
2

 ,

3
1
4

 linearly independent?

Equivalently, does the (homogeneous) the vector equation

x

1
1
1

+ y

 1
−1
2

+ z

3
1
4

 =

0
0
0


have a nontrivial solution? How do we solve this kind of vector equation? 1 1 3

1 −1 1
1 2 4

 row reduce

 1 0 2
0 1 1
0 0 0


So x = −2z and y = −z . So the vectors are linearly dependent, and an
equation of linear dependence is (taking z = 1)

−2

1
1
1

−
 1
−1
2

+

3
1
4

 =

0
0
0

 .

[interactive]

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,1,1&v2=1,-1,2&v3=3,1,4&target=0,0,0


Checking Linear Independence

Question: Is


 1

1
−2

 ,

 1
−1
2

 ,

3
1
4

 linearly independent?

Equivalently, does the (homogeneous) the vector equation

x

 1
1
−2

+ y

 1
−1
2

+ z

3
1
4

 =

0
0
0


have a nontrivial solution? 1 1 3

1 −1 1
−2 2 4

 row reduce

 1 0 0
0 1 0
0 0 1



The trivial solution

x
y
z

 =

0
0
0

 is the unique solution. So the vectors are

linearly independent.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,1,-2&v2=1,-1,2&v3=3,1,4&captions=combo


Linear Independence and Matrix Columns

In general, {v1, v2, . . . , vp} is linearly independent if and only if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution, if and only if the matrix equation

Ax = 0

has only the trivial solution, where A is the matrix with columns v1, v2, . . . , vp:

A =

 | | |
v1 v2 · · · vp
| | |

 .

This is true if and only if the matrix A has a pivot in each column.

I The vectors v1, v2, . . . , vp are linearly independent if and only if the
matrix with columns v1, v2, . . . , vp has a pivot in each column.

I Solving the matrix equation Ax = 0 will either verify that the
columns v1, v2, . . . , vp of A are linearly independent, or will
produce a linear dependence relation.

Important



Linear Independence
Criterion

Suppose that one of the vectors {v1, v2, . . . , vp} is a linear combination of the
other ones (that is, it is in the span of the other ones):

v3 = 2v1 −
1

2
v2 + 6v4

Then the vectors are linearly dependent:

2v1 −
1

2
v2 − v3 + 6v4 = 0.

Conversely, if the vectors are linearly dependent

2v1 −
1

2
v2 + 6v4 = 0.

then one vector is a linear combination of (in the span of) the other ones:

v2 = 4v1 + 12v4.

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if one of the
vectors is in the span of the other ones.



Linear Independence
Another criterion

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if one of the
vectors is in the span of the other ones.

Equivalently:

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if you can
remove one of the vectors without shrinking the span.

Indeed, if v2 = 4v1 + 12v3, then a linear combination of v1, v2, v3 is

x1v1 + x2v2 + x3v3 = x1v1 + x2(4v1 + 12v3) + x3v3

= (x1 + 4x2)v1 + (12x2 + x3)v3,

which is already in Span{v1, v3}.

Conclusion: v2 was redundant.



Linear Independence
Increasing span criterion

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if one of the
vectors is in the span of the other ones.

Better Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if there is
some j such that vj is in Span{v1, v2, . . . , vj−1}.

Equivalently, {v1, v2, . . . , vp} is linearly independent if for every j , the vector vj
is not in Span{v1, v2, . . . , vj−1}.

This means Span{v1, v2, . . . , vj} is bigger than Span{v1, v2, . . . , vj−1}.

A set of vectors is linearly independent if and only if,
every time you add another vector to the set, the span
gets bigger.

Translation



Linear Independence
Increasing span criterion: justification

Better Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if there is
some j such that vj is in Span{v1, v2, . . . , vj−1}.

Why? Take the largest j such that vj is in the span of the others. Then vj is
in the span of v1, v2, . . . , vj−1. Why? If not (j = 3):

v3 = 2v1 −
1

2
v2 + 6v4

Rearrange:

v4 = −1

6

(
2v1 −

1

2
v2 − v3

)
so v4 works as well, but v3 was supposed to be the last one that was in the
span of the others.



Linear Independence
Pictures in R2

[interactive 2D: 2 vectors]

[interactive 2D: 3 vectors]

Span{v}

v

One vector {v}:
Linearly independent if v 6= 0.

Two vectors {v ,w}:
Linearly independent

I Neither is in the span of
the other.

I Span got bigger.

Three vectors {v ,w , u}:
Linearly dependent:

I u is in Span{v ,w}.
I Span didn’t get bigger

after adding u.
I Can remove u without

shrinking the span.

Also v is in Span{u,w} and w
is in Span{u, v}.

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,1&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,1&v3=0,-1.5&labels=v,w,u&range=5


Linear Independence
Pictures in R2

[interactive 2D: 2 vectors]

[interactive 2D: 3 vectors]

Span{v}

Span{w}

v
w

One vector {v}:
Linearly independent if v 6= 0.

Two vectors {v ,w}:
Linearly independent

I Neither is in the span of
the other.

I Span got bigger.

Three vectors {v ,w , u}:
Linearly dependent:

I u is in Span{v ,w}.
I Span didn’t get bigger

after adding u.
I Can remove u without

shrinking the span.

Also v is in Span{u,w} and w
is in Span{u, v}.

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,1&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,1&v3=0,-1.5&labels=v,w,u&range=5


Linear Independence
Pictures in R2

[interactive 2D: 2 vectors]

[interactive 2D: 3 vectors]

Span{v}

Span{w}
Span{v ,w}

v
w

u

One vector {v}:
Linearly independent if v 6= 0.

Two vectors {v ,w}:
Linearly independent

I Neither is in the span of
the other.

I Span got bigger.

Three vectors {v ,w , u}:
Linearly dependent:

I u is in Span{v ,w}.
I Span didn’t get bigger

after adding u.
I Can remove u without

shrinking the span.

Also v is in Span{u,w} and w
is in Span{u, v}.

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,1&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,1&v3=0,-1.5&labels=v,w,u&range=5


Linear Independence
Pictures in R2

[interactive 2D: 2 vectors]

[interactive 2D: 3 vectors]

Span{v}

v

w

Two collinear vectors {v ,w}:
Linearly dependent:

I w is in Span{v}.
I Can remove w without

shrinking the span.

I Span didn’t get bigger
when we added w .

Observe: Two vectors are
linearly dependent if and only if
they are collinear.

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,-.5&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,-.5&v3=0,-1.5&labels=v,w,u&range=5


Linear Independence
Pictures in R2

[interactive 2D: 2 vectors]

[interactive 2D: 3 vectors]

Span{v}

v

w

u

Three vectors {v ,w , u}:
Linearly dependent:

I w is in Span{u, v}.
I Can remove w without

shrinking the span.

I Span didn’t get bigger
when we added w .

Observe: If a set of vectors is
linearly dependent, then so is
any larger set of vectors!

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,-.5&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,-.5&v3=0,-1.5&labels=v,w,u&range=5


Linear Independence
Pictures in R3

[interactive 3D: 2 vectors]

[interactive 3D: 3 vectors]

v

w

Span{v}

Span{w}
Two vectors {v ,w}:
Linearly independent:

I Neither is in the span of
the other.

I Span got bigger when we
added w .

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&v3=.5,-.5,1&labels=v,w,x&range=5


Linear Independence
Pictures in R3

[interactive 3D: 2 vectors]

[interactive 3D: 3 vectors]

v

w

u

Span{v}

Span{w}

Span{v ,w}

Three vectors {v ,w , u}:
Linearly independent: span got
bigger when we added u.

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&v3=.5,-.5,1&labels=v,w,x&range=5


Linear Independence
Pictures in R3

[interactive 3D: 2 vectors]

[interactive 3D: 3 vectors]

v

w

x

Span{v}

Span{w}

Span{v ,w}

Three vectors {v ,w , x}:
Linearly dependent:

I x is in Span{v ,w}.
I Can remove x without

shrinking the span.

I Span didn’t get bigger
when we added x .

http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&labels=v,w&range=5
http://textbooks.math.gatech.edu/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&v3=.5,-.5,1&labels=v,w,x&range=5


Poll

Are there four vectors u, v ,w , x in R3 which are linearly depen-
dent, but such that u is not a linear combination of v ,w , x? If
so, draw a picture; if not, give an argument.

Poll

Yes: actually the pictures on the previous slides provide such an example.

Linear dependence of {v1, . . . , vp} means some vi is a linear combination of the
others, not any.



Linear Dependence and Free Variables

Theorem
Let v1, v2, . . . , vp be vectors in Rn, and consider the matrix

A =

 | | |
v1 v2 · · · vp
| | |

 .

Then you can delete the columns of A without pivots (the columns
corresponding to free variables), without changing Span{v1, v2, . . . , vp}. The
pivot columns are linearly independent, so you can’t delete any more columns.

This means that each time you add a pivot column, then the span increases.

Let d be the number of pivot columns in the matrix A above.
I If d = 1 then Span{v1, v2, . . . , vp} is a line.

I If d = 2 then Span{v1, v2, . . . , vp} is a plane.

I If d = 3 then Span{v1, v2, . . . , vp} is a 3-space.

I Etc.

Upshot



Linear Dependence and Free Variables
Justification

Why? If the matrix is in RREF:

A =

 1 0 2 0
0 1 3 0
0 0 0 1


then the column without a pivot is in the span of the pivot columns:2

3
0

 = 2

1
0
0

+ 3

0
1
0

+ 0

0
0
1


and the pivot columns are linearly independent:0

0
0

 = x1

1
0
0

+ x2

0
1
0

+ x4

0
0
1

 =

x1

x2

x4

 =⇒ x1 = x2 = x4 = 0.



Linear Dependence and Free Variables
Justification

Why? If the matrix is not in RREF, then row reduce:

A =

 1 7 23 3
2 4 16 0
−1 −2 −8 4

 RREF

 1 0 2 0
0 1 3 0
0 0 0 1


The following vector equations have the same solution set:

x1

 1
2
−1

 + x2

 7
4
−2

 + x3

23
16
−8

 + x4

3
0
4

 = 0

x1

1
0
0

 + x2

0
1
0

 + x3

2
3
0

 + x4

0
0
1

 = 0

We conclude that

23
16
−8

 = 2

 1
2
−1

+ 3

 7
4
−2

+ 0

3
0
4


and that x1

 1
2
−1

+ x2

 7
4
−2

+ x4

3
0
4

 = 0 has only the trivial solution.



Linear Independence
Two more facts

Fact 1: Say v1, v2, . . . , vn are in Rm. If n > m then {v1, v2, . . . , vn} is linearly
dependent: the matrix

A =

 | | |
v1 v2 · · · vn
| | |

 .

cannot have a pivot in each column (it is too wide).

This says you can’t have 4 linearly independent vectors in R3, for instance.

A wide matrix can’t have linearly independent columns.

Fact 2: If one of v1, v2, . . . , vn is zero, then {v1, v2, . . . , vn} is linearly
dependent. For instance, if v1 = 0, then

1 · v1 + 0 · v2 + 0 · v3 + · · ·+ 0 · vn = 0

is a linear dependence relation.

A set containing the zero vector is linearly dependent.



Summary

I A set of vectors is linearly independent if removing one of the vectors
shrinks the span; otherwise it’s linearly dependent.

I There are several other criteria for linear (in)dependence which lead to
pretty pictures.

I The columns of a matrix are linearly independent if and only if the RREF
of the matrix has a pivot in every column.

I The pivot columns of a matrix A are linearly independent, and you can
delete the non-pivot columns (the “free” columns) without changing the
span of the columns.

I Wide matrices cannot have linearly independent columns.

These are not the official definitions!

Warning



Section 2.6

Subspaces



Motivation

Today we will discuss subspaces of Rn.

A subspace turns out to be the same as a span, except we don’t know which
vectors it’s the span of.

This arises naturally when you have, say, a plane through the origin in R3 which
is not defined (a priori) as a span, but you still want to say something about it.

x + 3y + z = 0



Definition of Subspace

Definition
A subspace of Rn is a subset V of Rn satisfying:

1. The zero vector is in V . “not empty”

2. If u and v are in V , then u + v is also in V . “closed under addition”

3. If u is in V and c is in R, then cu is in V . “closed under × scalars”

Every subspace is a span, and every span is a subspace.

Fast-forward

A subspace is a span of some vectors, but you haven’t computed what those
vectors are yet.



Definition of Subspace

Definition
A subspace of Rn is a subset V of Rn satisfying:

1. The zero vector is in V . “not empty”

2. If u and v are in V , then u + v is also in V . “closed under addition”

3. If u is in V and c is in R, then cu is in V . “closed under × scalars”

What does this mean?

I If v is in V , then all scalar multiples of v are in V by (3). In other words,
the line through any nonzero vector in V is also in V .

I If u, v are in V , then cu and dv are in V for any scalars c, d by (3). So
cu + dv is in V by (2). So Span{u, v} is contained in V .

I Likewise, if v1, v2, . . . , vn are all in V , then Span{v1, v2, . . . , vn} is
contained in V : a subspace contains the span of any set of vectors in it.

If you pick enough vectors in V , eventually their span will fill up V , so:

A subspace is a span of some set of vectors in it.



Examples

Example

A line L through the origin is a subspace:
L contains zero and is easily seen to be
closed under addition and scalar multi-
plication.

L

Example

A plane P through the origin is a sub-
space: P contains zero; the sum of two
vectors in P is also in P; and any scalar
multiple of a vector in P is also in P.

P

Example

All of Rn: this contains 0, and is closed under addition and scalar multiplication.

Example

The subset {0}: this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)



Subsets and Subspaces
They aren’t the same thing

A subset of Rn is any collection of vectors in Rn whatsoever. For example, the
unit circle

C = {(x , y) in R2 | x2 + y 2 = 1}

is a subset of R2, but it is not a subspace.

All of the following non-examples on the next slide are still subsets.

A subspace is a special kind of subset, that satisfies the three defining
properties.

Subset: yes
Subspace: no



Non-Examples

Non-Example

A line L (or any other set) that doesn’t
contain the origin is not a subspace.
Fails: 1.

Non-Example

A circle C is not a subspace. Fails:
1,2,3. Think: a circle isn’t a “linear
space.”

Non-Example

The first quadrant in R2 is not a sub-
space. Fails: 3 only.

Non-Example

A line union a plane in R3 is not a sub-
space. Fails: 2 only.



Subspaces are Spans, and Spans are Subspaces

Theorem
Any Span{v1, v2, . . . , vp} is a subspace.

Every subspace is a span, and every span is a subspace.

!!!

Definition
If V = Span{v1, v2, . . . , vp}, we say that V is the subspace generated by or
spanned by the vectors v1, v2, . . . , vp. We call {v1, v2, . . . , vp} a spanning set
for V .

Check:

1. 0 = 0v1 + 0v2 + · · ·+ 0vp is in the span.

2. If, say, u = 3v1 + 4v2 and v = −v1 − 2v2, then

u + v = 3v1 + 4v2 − v1 − 2v2 = 2v1 + 2v2

is also in the span.

3. Similarly, if u is in the span, then so is cu for any scalar c.



Poll

Which of the following are subspaces?
A. The empty set {}.
B. The solution set to a homogeneous system of linear equations.

C. The solution set to an inhomogeneous system of linear equations.

D. The set of all vectors in Rn with rational (fraction) coordinates.
For the ones which are not subspaces, which property(ies) do they not
satisfy?

Poll

A. This is not a subspace: it does not contain the zero vector.

B. This is a subspace: the solution set is a span, produced by finding the
parametric vector form of the solution.

C. This is not a subspace: it does not contain 0.

D. This is not a subspace: it is not closed under multiplication by scalars (e.g.
by π).



Subspaces
Verification

Let V =

{(
a
b

)
in R2

∣∣ ab = 0

}
. Let’s check if V is a subspace or not.

1. Does V contain the zero vector?
(
a
b

)
=
(

0
0

)
=⇒ ab = 0 "

3. Is V closed under scalar multiplication?
I Let

(a
b

)
be (an unknown vector) in V .

I This means: a and b are numbers such that ab = 0.
I Let c be a scalar. Is c

(a
b

)
=
(ca
cb

)
in V ?

I This means: (ca)(cb) = 0.
I Well, (ca)(cb) = c2(ab) = c2(0) = 0 "

2. Is V closed under addition?
I Let

(a
b

)
and

(a′
b′
)

be (unknown vectors) in V .
I This means: ab = 0 and a′b′ = 0.
I Is

(a
b

)
+
(a′
b′
)

=
(a+a′

b+b′
)

in V ?
I This means: (a + a′)(b + b′) = 0.
I This is not true for all such a, a′, b, b′: for instance,

(1
0

)
and

(0
1

)
are in V ,

but their sum
(1

0

)
+
(0

1

)
=
(1

1

)
is not in V , because 1 · 1 6= 0. %

We conclude that V is not a subspace. A picture is above. (It doesn’t look like
a span.)

V



Column Space and Null Space

An m × n matrix A naturally gives rise to two subspaces.

Definition

I The column space of A is the subspace of Rm spanned by the columns of
A. It is written ColA.

I The null space of A is the set of all solutions of the homogeneous
equation Ax = 0:

NulA =
{
x in Rn | Ax = 0

}
.

This is a subspace of Rn.

The column space is defined as a span, so we know it is a subspace.

Check that the null space is a subspace:

1. 0 is in NulA because A0 = 0.

2. If u and v are in NulA, then Au = 0 and Av = 0. Hence

A(u + v) = Au + Av = 0,

so u + v is in NulA.

3. If u is in NulA, then Au = 0. For any scalar c, A(cu) = cAu = 0. So cu is
in NulA.



Column Space and Null Space
Example

Let A =

 1 1
1 1
1 1

.

Let’s compute the column space:

ColA = Span


1

1
1

 ,

1
1
1

 = Span


1

1
1

 .

This is a line in R3.

Col(A)

Let’s compute the null space:

The reduced row echelon form of A is

 1 1
0 0
0 0

.

This gives the equation x + y = 0, or

x = −y
y = y

parametric vector form (
x
y

)
= y

(
−1
1

)
.

Hence the null space is Span{
(−1

1

)
}, a line in R2.

NulA



The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so
it is a span.

Question
How to find vectors that span the null space?

Answer: Parametric vector form! We know that the solution set to Ax = 0 has
a parametric form that looks like

x3


1
2
1
0

+ x4


−2
3
0
1

 if, say, x3 and x4

are the free
variables. So

NulA = Span




1
2
1
0

 ,


−2
3
0
1


 .

Refer back to the slides for §2.4 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find
spanning vectors later, if we need them. This is one reason subspaces are so
useful.



Subspaces
Summary

I A subspace is the same as a span of some number of vectors, but we
haven’t computed the vectors yet.

I To any matrix is associated two subspaces, the column space and the null
space:

ColA = the span of the columns of A

NulA = the solution set of Ax = 0.

I Is it a span? Can it be written as a span?

I Can it be written as the column space of a matrix?

I Can it be written as the null space of a matrix?

I Is it all of Rn or the zero subspace {0}?
I Can it be written as a type of subspace that we’ll learn about later

(eigenspaces, . . . )?

If so, then it’s automatically a subspace.

If all else fails:

I Can you verify directly that it satisfies the three defining
properties?

How do you check if a subset is a subspace?



Sections 2.7 and 2.9

Basis, Dimension, Rank and Basis Theorems



Subspaces
Reminder

Recall: a subspace of Rn is the same thing as a span, except we haven’t
computed a spanning set yet.

For example, ColA and NulA for a matrix A.

There are lots of choices of spanning set for a given subspace.

Are some better than others?



Basis of a Subspace

What is the smallest number of vectors that are needed to span a subspace?

Definition
Let V be a subspace of Rn. A basis of V is a set of vectors {v1, v2, . . . , vm} in
V such that:

1. V = Span{v1, v2, . . . , vm}, and

2. {v1, v2, . . . , vm} is linearly independent.

The number of vectors in a basis is the dimension of V , and is written dimV .

N
o

te
th

e
b

ig
red

b
ord

er
h

ere

Why is a basis the smallest number of vectors needed to span?

Recall: linearly independent means that every time you add another vector, the
span gets bigger.

Hence, if we remove any vector, the span gets smaller : so any smaller set can’t
span V .

A subspace has many different bases, but they all have the same
number of vectors.

Important



Bases of R2

Question
What is a basis for R2?

We need two vectors that span R2 and are lin-
early independent. {e1, e2} is one basis.

1. They span:
(
a
b

)
= ae1 + be2.

2. They are linearly independent because
they are not collinear.

e1

e2

Question
What is another basis for R2?

Any two nonzero vectors that are not collinear.{(
1
0

)
,
(

1
1

)}
is also a basis.

1. They span: ( 1 1
0 1 ) has a pivot in every row.

2. They are linearly independent: ( 1 1
0 1 ) has a

pivot in every column.

(1
0

)
(1

1

)



Bases of Rn

The unit coordinate vectors

e1 =


1
0
...
0
0

 , e2 =


0
1
...
0
0

 , . . . , en−1 =


0
0
...
1
0

 , en =


0
0
...
0
1


are a basis for Rn.

1. They span: In has a pivot in every row.

The identity matrix has columns e1, e2, . . . , en.

2. They are linearly independent: In has a pivot in every column.

In general: {v1, v2, . . . , vn} is a basis for Rn if and only if the matrix

A =

 | | |
v1 v2 · · · vn
| | |


has a pivot in every row and every column.

Sanity check: we have shown that dim Rn = n.



Basis of a Subspace
Example

Example

Let

V =


x
y
z

 in R3
∣∣ x + 3y + z = 0

 B =


−3

1
0

 ,

 0
1
−3

 .

Verify that B is a basis for V . (So dimV = 2: it is a plane.) [interactive]

0. In V : both vectors are in V because

−3 + 3(1) + 0 = 0 and 0 + 3(1) + (−3) = 0.

1. Span: If

x
y
z

 is in V , then y = − 1
3
(x + z), sox

y
z

 = −x

3

−3
1
0

− z

3

 0
1
−3

 .

2. Linearly independent:

c1

−3
1
0

+ c2

 0
1
−3

 = 0 =⇒

 −3c1

c1 + c2

−3c2

 =

0
0
0

 =⇒ c1 = c2 = 0.

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=-3,1,0&v2=0,1,-3&range=5&captions=combo


Basis for NulA

The vectors in the parametric vector form of the general solution
to Ax = 0 always form a basis for NulA.

Fact

Example

A =

 1 2 0 −1
−2 −3 4 5

2 4 0 −2

 rref

 1 0 −8 −7
0 1 4 3
0 0 0 0


parametric

vector
form

x = x3


8
−4
1
0

+ x4


7
−3
0
1


basis of
NulA




8
−4
1
0

 ,


7
−3
0
1




1. The vectors span NulA by construction (every solution to Ax = 0 has this
form).

2. Can you see why they are linearly independent? (Look at the last two
rows.)



Basis for ColA

The pivot columns of A always form a basis for ColA.

Fact

Warning: I mean the pivot columns of the original matrix A, not the
row-reduced form. (Row reduction changes the column space.)

Example

A =

 1 2 0 −1
−2 −3 4 5

2 4 0 −2

 rref

 1 0 −8 −7
0 1 4 3
0 0 0 0


pivot columns in rrefpivot columns = basis

So a basis for ColA is 
 1
−2

2

 ,

 2
−3

4

 .

Why? See slides on linear independence.



The Basis Theorem

Basis Theorem
Let V be a subspace of dimension m. Then:

I Any m linearly independent vectors in V form a basis for V .

I Any m vectors that span V form a basis for V .

If you already know that dimV = m, and you have m
vectors B = {v1, v2, . . . , vm} in V , then you only have
to check one of

1. B is linearly independent, or

2. B spans V

in order for B to be a basis.

Upshot

Example: any three linearly independent vectors form a basis for R3.



The Rank Theorem

Recall:

I The dimension of a subspace V is the number of vectors in a basis for V .

I A basis for the column space of a matrix A is given by the pivot columns.

I A basis for the null space of A is given by the vectors attached to the free
variables in the parametric vector form.

Definition
The rank of a matrix A, written rankA, is the dimension of the column space
ColA. The nullity of A, written nullityA, is the dimension of the solution set of
Ax = 0.

Observe:
rankA = dim ColA = the number of columns with pivots

nullityA = dim NulA = the number of free variables

= the number of columns without pivots.
Rank Theorem
If A is an m × n matrix, then

rankA + nullityA = n = the number of columns of A.

In other words, [interactive 1] [interactive 2]

(dimension of column space) + (dimension of solution set) = (number of variables).

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?captions=rankthm
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,-1,2:-1,2,4&captions=rankthm


The Rank Theorem
Example

1 2 0 −1
−2 −3 4 5

2 4 0 −2

  1 0 −8 −7
0 1 4 3
0 0 0 0

 rref
A =

basis of ColAbasis of ColA free variables

A basis for ColA is 
 1
−2

2

 ,

 2
−3

4

 ,

so rankA = dim ColA = 2.

Since there are two free variables x3, x4, the parametric vector form for the
solutions to Ax = 0 is

x = x3


8
−4

1
0

+ x4


7
−3

0
1

 basis for NulA




8
−4

1
0

 ,


7
−3

0
1


 .

Thus nullityA = dim NulA = 2.

The Rank Theorem says 2 + 2 = 4.



Poll

True or False: If A is a 10×15 matrix and there is a basis of ColA
consisting of 4 vectors, then there is a basis of NulA consisting
of 6 vectors.

Poll

False: if rankA = 4 then nullityA = 15− 4 = 11.



Summary

I A basis of a subspace is a minimal set of spanning vectors.

I There are recipes for computing a basis for the column space and null
space of a matrix.

I The dimension of a subspace is the number of vectors in any basis.

I The basis theorem says that if you already know that dimV = m, and
you have m vectors in V , then you only have to check if they span or
they’re linearly independent to know they’re a basis.

I The rank theorem says the dimension of the column space of a matrix,
plus the dimension of the null space, is the number of columns of the
matrix.



Chapter 3

Linear Transformations and Matrix Algebra



Section 3.1

Matrix Transformations



Motivation

Let A be a matrix, and consider the matrix equation b = Ax . If we vary x , we
can think of this as a function of x .

Many functions in real life—the linear transformations—come from matrices in
this way.

It makes us happy when a function comes from a matrix, because then
questions about the function translate into questions a matrix, which we can
usually answer.

For this reason, we want to study matrices as functions.



Matrices as Functions

Change in Perspective. Let A be a matrix with m rows and n columns. Let’s
think about the matrix equation b = Ax as a function.

I The independent variable (the input) is x , which is a vector in Rn.

I The dependent variable (the output) is b, which is a vector in Rm.

As you vary x , then b = Ax also varies. The set of all possible output vectors b
is the column space of A.

Rn Rm
b = Ax

x
Ax col.span

[interactive 1] [interactive 2]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?show=false
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=false


Matrices as Functions
Projection

A =

 1 0 0
0 1 0
0 0 0


In the equation Ax = b, the input vector x is in R3 and the output vector b is
in R3. Then

A

x
y
z

 =

 1 0 0
0 1 0
0 0 0

x
y
z

 =

x
y
0

 .

This is projection onto the xy -plane. Picture:

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0,0:0,1,0:0,0,0&range2=5&closed=true


Matrices as Functions
Reflection

A =

(
−1 0
0 1

)
In the equation Ax = b, the input vector x is in R2 and the output vector b is
in R2. Then

A

(
x
y

)
=

(
−1 0
0 1

)(
x
y

)
=

(
−x
y

)
.

This is reflection over the y -axis. Picture:

b = Ax

[interactive]

http://textbooks.math.gatech.edu/ila/demos/twobytwo.html?mat=-1,0,0,1&closed=true


Matrices as Functions
Dilation

A =

(
1.5 0
0 1.5

)
In the equation Ax = b, the input vector x is in R2 and the output vector b is
in R2.

A

(
x
y

)
=

(
1.5 0
0 1.5

)(
x
y

)
=

(
1.5x
1.5y

)
= 1.5

(
x
y

)
.

This is dilation (scaling) by a factor of 1.5. Picture:

b = Ax

[interactive]

http://textbooks.math.gatech.edu/ila/demos/twobytwo.html?mat=1.5,0,0,1.5&closed=true&pic=theo3.jpg


Matrices as Functions
Identity

A =

(
1 0
0 1

)
In the equation Ax = b, the input vector x is in R2 and the output vector b is
in R2.

A

(
x
y

)
=

(
1 0
0 1

)(
x
y

)
=

(
x
y

)
.

This is the identity transformation which does nothing. Picture:

b = Ax

[interactive]

http://textbooks.math.gatech.edu/ila/demos/twobytwo.html?mat=1,0,0,1&closed=true&pic=theo11.jpg


Matrices as Functions
Rotation

A =

(
0 −1
1 0

)
In the equation Ax = b, the input vector x is in R2 and the output vector b is
in R2. Then

A

(
x
y

)
=

(
0 −1
1 0

)(
x
y

)
=

(
−y
x

)
.

What is this? Let’s plug in a few points and see what happens.

A

(
1
2

)
=

(
−2
1

)
A

(
−1
1

)
=

(
−1
−1

)
A

(
0
−2

)
=

(
2
0

)

It looks like counterclockwise rotation by 90◦.



Matrices as Functions
Rotation

A =

(
0 −1
1 0

)
In the equation Ax = b, the input vector x is in R2 and the output vector b is
in R2. Then

A

(
x
y

)
=

(
0 −1
1 0

)(
x
y

)
=

(
−y
x

)
.

b = Ax

[interactive]

http://textbooks.math.gatech.edu/ila/demos/twobytwo.html?mat=0,-1,1,0&closed=true&pic=theo8.jpg


Other Geometric Transformations

In §4.1 there are other examples of geometric transforma-
tions of R2 given by matrices. Please look them over.



Transformations
Motivation

We have been drawing pictures of what it looks like to multiply a matrix by a
vector, as a function of the vector.

Now let’s go the other direction. Suppose we have a function, and we want to
know, does it come from a matrix?

Example

For a vector x in R2, let T (x) be the counterclockwise rotation of x by an
angle θ. Is T (x) = Ax for some matrix A?

If θ = 90◦, then we know T (x) = Ax , where

A =

(
0 −1
1 0

)
.

But for general θ, it’s not clear.

Our next goal is to answer this kind of question.



Transformations
Vocabulary

Definition
A transformation (or function or map) from Rn to Rm is a rule T that assigns
to each vector x in Rn a vector T (x) in Rm.

I Rn is called the domain of T (the inputs).

I Rm is called the codomain of T (the outputs).

I For x in Rn, the vector T (x) in Rm is the image of x under T .
Notation: x 7→ T (x).

I The set of all images {T (x) | x in Rn} is the range of T .

Notation:

T : Rn −→ Rm means T is a transformation from Rn to Rm.

Rn Rm

domain codomain

T

x
T (x) range

T

It may help to think of T
as a “machine” that takes x
as an input, and gives you
T (x) as the output.



Functions from Calculus

Many of the functions you know and love have domain and codomain R.

sin : R −→ R sin(x) =

(
the length of the opposite edge over the
hypotenuse of a right triangle with angle
x in radians

)
Note how I’ve written down the rule that defines the function sin.

f : R −→ R f (x) = x2

Note that “x2” is sloppy (but common) notation for a function: it doesn’t have
a name!

You may be used to thinking of a function in terms of its graph.

x

(x , sin x) The horizontal axis is the domain, and
the vertical axis is the codomain.

This is fine when the domain and
codomain are R, but it’s hard to do
when they’re R2 and R3! You need five
dimensions to draw that graph.



Functions from Engineering

Suppose you are building a robot arm with three joints that can move its hand
around a plane, as in the following picture. (

x
y

)
= f (θ, ϕ, ψ)

(
x
y

)
= f (θ, ϕ, ψ)

θ

ϕ

ψ

Define a transformation f : R3 → R2:

f (θ, ϕ, ψ) = position of the hand at joint angles θ, ϕ, ψ.

Output of f : where is the hand on the plane.

This function does not come from a matrix; belongs to the field of inverse
kinematics.

https://en.wikipedia.org/wiki/Inverse_kinematics
https://en.wikipedia.org/wiki/Inverse_kinematics


Matrix Transformations

Definition
Let A be an m × n matrix. The matrix transformation associated to A is the
transformation

T : Rn −→ Rm defined by T (x) = Ax .

In other words, T takes the vector x in Rn to the vector Ax in Rm.

For example, if A =
(

1 2 3
4 5 6

)
and T (x) = Ax then

T

−1
−2
−3

 =

(
1 2 3
4 5 6

)−1
−2
−3

 =

(
−14
−32

)
.

I The domain of T is Rn, which is the number of columns of A.
I The codomain of T is Rm, which is the number of rows of A.
I The range of T is the set of all images of T :

T (x) = Ax =

 | | |
v1 v2 · · · vn
| | |



x1

x2

...
xn

 = x1v1 + x2v2 + · · ·+ xnvn.

This is the column space of A. It is a span of vectors in the codomain.Y
o

u
r

li
fe

w
il
l

b
e

m
u

ch
ea

si
er

if
yo

u
ju

st
re

m
em

b
er

th
es

e.



Matrix Transformations
Example

A =

−1 0
2 1
1 −1

 T (x) = Ax T : R2 → R3.

Domain is: R2. Codomain is: R3. Range is: all vectors of the form

T

(
x
y

)
= A

(
x
y

)
= x

−1
2
1

+ y

 0
1
−1

 ,

which is ColA.

[interactive]

domain

range(T )

codomain

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=-1,0:2,1:1,-1&closed=true&show=false


Matrix Transformations
Picture

The picture of a matrix transformation is the same as the pictures we’ve been
drawing all along. Only the language is different. Let

A =

(
−1 0
0 1

)
and let T (x) = Ax ,

so T : R2 → R2. Then

T

(
x
y

)
= A

(
x
y

)
=

(
−1 0
0 1

)(
x
y

)
=

(
−x
y

)
,

which is still is reflection over the y -axis. Picture:

T



Poll

Let A =

(
1 1
0 1

)
and let T (x) = Ax , so T : R2 → R2. (T is called a shear.)

What does T do to this sheep?

Hint: first draw a picture what it does to the box around the
sheep.

Poll

T

A B C

sheared sheep[interactive]

http://textbooks.math.gatech.edu/ila/demos/twobytwo.html?mat=1,1,0,1&closed=true&pic=sheep.jpg


Summary

I We can think of b = Ax as a transformation with input x and output b.

I There are vocabulary words associated to transformations: domain,
codomain, range.

I A transformation that comes from a matrix is called a matrix
transformation.

I In this case, the vocabulary words mean something concrete in terms of
matrices.

I We like transformations that come from matrices, because questions about
those transformations turn into questions about matrices.



Section 3.2

One-to-one and Onto Transformations



Matrix Transformations
Reminder

Recall: Let A be an m× n matrix. The matrix transformation associated to A
is the transformation

T : Rn −→ Rm defined by T (x) = Ax .

I The domain of T is Rn, which is the number of columns of A.

I The codomain of T is Rm, which is the number of rows of A.

I The range of T is the set of all images of T :

T (x) = Ax =

 | | |
v1 v2 · · · vn
| | |



x1

x2

...
xn

 = x1v1 + x2v2 + · · ·+ xnvn.

This is the column space of A. It is a span of vectors in the codomain.



Matrix Transformations
Example

Let A =

 1 1
0 1
1 1

 and let T (x) = Ax , so T : R2 → R3.

I If u =

(
3
4

)
then T (u) =

 1 1
0 1
1 1

(3
4

)
=

7
4
7

 .

I Let b =

7
5
7

. Find v in R2 such that T (v) = b. Is there more than one?

We want to find v such that T (v) = Av = b. We know how to do that: 1 1
0 1
1 1

 v =

7
5
7

 augmented
matrix

 1 1 7
0 1 5
1 1 7

 row
reduce

 1 0 2
0 1 5
0 0 0

 .

This gives x = 2 and y = 5, or v =

(
2
5

)
(unique). In other words,

T (v) =

 1 1
0 1
1 1

(2
5

)
=

7
5
7

 .



Matrix Transformations
Example, continued

Let A =

 1 1
0 1
1 1

 and let T (x) = Ax , so T : R2 → R3.

I Is there any c in R3 such that there is more than one v in R2 with
T (v) = c?

Translation: is there any c in R3 such that the solution set of Ax = c has
more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b
(from before), which has one vector in it. So the solution set to Ax = c
has only one vector. So no!

I Find c such that there is no v with T (v) = c.

Translation: Find c such that Ax = c is inconsistent.

Translation: Find c not in the column space of A (i.e., the range of T ).

We could draw a picture, or notice that if c =
(

1
2
3

)
, then our matrix

equation translates into

x + y = 1 y = 2 x + y = 3,

which is obviously inconsistent.



Matrix Transformations
Non-Example

Note: All of these questions are questions about the transformation T ; it still
makes sense to ask them in the absence of the matrix A.

The fact that T comes from a matrix means that these questions translate into
questions about a matrix, which we know how to do.

Non-example: T : R2 → R3 T

(
x
y

)
=

sin x
xy

cos y


Question: Is there any c in R3 such that there is more than one v in R2 with
T (v) = c?

Note the question still makes sense, although T has no hope of being a matrix
transformation.

By the way,

T

(
0
0

)
=

sin 0
0 · 0
cos 0

 =

0
0
1

 =

sinπ
0 · π
cos 0

 = T

(
π
0

)
,

so the answer is yes.



Questions About Transformations

Today we will focus on two important questions one can ask about a
transformation T : Rn → Rm:

I Do there exist distinct vectors x , y in Rn such that T (x) = T (y)?

I For every vector v in Rm, does there exist a vector x in Rn such that
T (x) = v?

These are subtle because of the multiple quantifiers involved (“for every”,
“there exists”).



One-to-one Transformations

Definition
A transformation T : Rn → Rm is one-to-one (or into, or injective) if different
vectors in Rn map to different vectors in Rm. In other words, for every b in Rm,
the equation T (x) = b has at most one solution x . Or, different inputs have
different outputs. Note that not one-to-one means at least two different
vectors in Rn have the same image.

Rn RmT

x

y

z

T (x)

T (y)

T (z)

range

one-to-one

[interactive]

Rn RmT

x

y

z

T (x) = T (y)

T (z)

range

not one-to-one

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0:0,1:1,1&x=1,1&show=true
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,-1:1,-1:1,-1&x=-1,1&show=true&lock=true


Poll

Consider the robot hand transformation from last lecture:(
x
y

)
= f (θ, ϕ, ψ)

θ

ϕ

ψ

Define f : R3 → R2 by:

f (θ, ϕ, ψ) = position of the hand at joint angles θ, ϕ, ψ.

Is f one-to-one?

Poll

No: there is more than one way to move the hand to the same point.



Characterization of One-to-One Matrix Transformations

Theorem
Let T : Rn → Rm be a matrix transformation with matrix A. Then the
following are equivalent:

I T is one-to-one.

I For each b in Rm, the equation T (x) = b has at most one solution.

I For each b in Rm, the equation Ax = b has a unique solution or is
inconsistent.

I Ax = 0 has a unique solution.

I The columns of A are linearly independent.

I A has a pivot in every column.

Question
If T : Rn → Rm is one-to-one, what can we say about the relative sizes of n and
m?

Answer: T corresponds to an m× n matrix A. In order for A to have a pivot in
every column, it must have at least as many rows as columns: n ≤ m.

1 0 0
0 1 0
0 0 1
0 0 0

 For instance, R3 is “too big” to map into R2.



One-to-One Transformations
Example

Define

A =

 1 0
0 1
1 0

 T (x) = Ax ,

so T : R2 → R3. Is T one-to-one?

The reduced row echelon form of A is 1 0
0 1
0 0


which has a pivot in every column. Hence T is one-to-one.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=true


One-to-One Transformations
Non-Example

Define

A =

(
1 1 0
0 1 1

)
T (x) = Ax ,

so T : R3 → R2. Is T one-to-one? If not, find two different vectors x , y such
that T (x) = T (y).

The reduced row echelon form of A is(
1 0 −1
0 1 1

)
which does not have a pivot in every column. Hence A is not one-to-one.
In particular, Ax = 0 has nontrivial solutions. The parametric form of the
solutions of Ax = 0 are

x − z = 0

y + z = 0
=⇒

x = z

y = −z .

Taking z = 1 gives

T

 1
−1
1

 =

(
1 1 0
0 1 1

) 1
−1
1

 = 0 = T

0
0
0

 .

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,1,0:0,1,1&range2=5&closed=true&show=true&lock=true&x=0,0,0


Onto Transformations

Definition
A transformation T : Rn → Rm is onto (or surjective) if the range of T is
equal to Rm (its codomain). In other words, for every b in Rm, the equation
T (x) = b has at least one solution. Or, every possible output has an input.
Note that not onto means there is some b in Rm which is not the image of any
x in Rn.

Rn

x

T (x)

range(T )

Rm = codomain
T

onto

[interactive]

Rn

x

T (x)

range(T )

Rm = codomain
T

not onto

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,-1,2:-1,2,4&x=1,1,1&show=false
http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?show=false


Poll

Consider the robot hand transformation again: (
x
y

)
= f (θ, ϕ, ψ)

θ

ϕ

ψ

Define f : R3 → R2 by:

f (θ, ϕ, ψ) = position of the hand at joint angles θ, ϕ, ψ.

Is f onto?

Poll

No: it can’t reach points that are far away.



Characterization of Onto Matrix Transformations

Theorem
Let T : Rn → Rm be a matrix transformation with matrix A. Then the
following are equivalent:

I T is onto

I T (x) = b has a solution for every b in Rm

I Ax = b is consistent for every b in Rm

I The columns of A span Rm

I A has a pivot in every row

Question
If T : Rn → Rm is onto, what can we say about the relative sizes of n and m?

Answer: T corresponds to an m × n matrix A. In order for A to have a pivot
in every row, it must have at least as many columns as rows: m ≤ n. 1 0 ? 0 ?

0 1 ? 0 ?
0 0 0 1 ?


For instance, R2 is “too small” to map onto R3.



Onto Transformations
Example

Define

A =

(
1 1 0
0 1 1

)
T (x) = Ax ,

so T : R3 → R2. Is T onto?

The reduced row echelon form of A is(
1 0 −1
0 1 1

)
which has a pivot in every row. Hence T is onto.

Note that T is onto but not one-to-one.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,1,0:0,1,1&range2=5&closed=true&show=true&lock=true&x=0,0,0


Onto Transformations
Non-Example

Define

A =

 1 0
0 1
1 0

 T (x) = Ax ,

so T : R2 → R3. Is T onto? If not, find a vector v in R3 such that there does
not exist any x in R2 with T (x) = v .

The reduced row echelon form of A is 1 0
0 1
0 0


which does not have a pivot in every row. Hence A is not onto.

In order to find a vector v not in the range, we notice that T
(
a
b

)
=
(

a
b
a

)
. In

particular, the x- and z-coordinates are the same for every vector in the range,

so for example, v =
(

1
2
3

)
is not in the range.

Note that T is one-to-one but not onto.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=true


One-to-One and Onto Transformations
Non-Example

Define

A =

(
1 −1 2
−2 2 −4

)
T (x) = Ax ,

so T : R3 → R2. Is T one-to-one? Is it onto?

The reduced row echelon form of A is(
1 −1 2
0 0 0

)
,

which does not have a pivot in every row or in every column. Hence T is
neither one-to-one nor onto.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?closed=true


Summary

I A transformation T is one-to-one if T (x) = b has at most one solution,
for every b in Rm.

I A transformation T is onto if T (x) = b has at least one solution, for
every b in Rm.

I A matrix transformation with matrix A is one-to-one if and only if the
columns of A are linearly independent, if and only if A has a pivot in every
column.

I A matrix transformation with matrix A is onto if and only if the columns
of A span Rm, if and only if A has a pivot in every row.

I Two of the most basic questions one can ask about a transformation is
whether it is one-to-one or onto.



Section 3.3

Linear Transformations



Linear Transformations
Motivation

In the last two lectures we have been asking questions about transformations,
and answering them in the case of matrix transformations.

However, sometimes it is not clear if a transformation is a matrix
transformation or not.

Example

For a vector x in R2, let T (x) be the counterclockwise rotation of x by an
angle θ. Is T (x) = Ax for some matrix A?

θ

T

Today we will answer this question.



Linear Transformations

So, which transformations actually come from matrices?

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

A(u + v) = Au + Av A(cv) = cAv .

So if T (x) = Ax is a matrix transformation then,

T (u + v) = T (u) + T (v) and T (cv) = cT (v).

Any matrix transformation has to satisfy this property. This property is so
special that it has its own name.

Definition
A transformation T : Rn → Rm is linear if it satisfies the above equations for all
vectors u, v in Rn and all scalars c.

In other words, T “respects” addition and scalar multiplication.

Check: if T is linear, then

T (0) = 0 T (cu + dv) = cT (u) + dT (v)

for all vectors u, v and scalars c, d . More generally,

T
(
c1v1 + c2v2 + · · ·+ cnvn

)
= c1T (v1) + c2T (v2) + · · ·+ cnT (vn).

In engineering this is called superposition.



Linear Transformations
Dilation

Define T : R2 → R2 by T (x) = 1.5x . Is T linear? Check:

T (u + v) = 1.5(u + v) = 1.5u + 1.5v = T (u) + T (v)

T (cv) = 1.5(cv) = c(1.5v) = c(Tv).

So T satisfies the two equations, hence T is linear.

Note: T is a matrix transformation!

T (x) =

(
1.5 0
0 1.5

)
x ,

as we checked before.



Linear Transformations
Rotation

Define T : R2 → R2 by

T (x) = the vector x rotated counterclockwise by an angle of θ.

Is T linear? Check:

u

vu + v

T

T (u)

T (v)
T (u + v)

θ

u
cu

T

T (u)

T (cu)

θ

The pictures show T (u) + T (v) = T (u + v) and T (cu) = cT (u).

Since T satisfies the two equations, T is linear.



Linear Transformations
Non-example

Is every transformation a linear transformation?

No! For instance, T

(
x
y

)
=

sin x
xy

cos y

 is not linear.

Why? We have to check the two defining properties. Let’s try the second:

T

(
c

(
x
y

))
=

 sin(cx)
(cx)(cy)
cos(cy)

 ?
= c

sin x
xy

cos y

 = cT

(
x
y

)
Not necessarily: if c = 2 and x = π, y = π, then

T

(
2

(
π
π

))
= T

(
2π
2π

)
=

 sin 2π
2π · 2π
cos 2π

 =

 0
4π2

1


2T

(
π
π

)
= 2

sinπ
π · π
cosπ

 =

 0
2π2

−2

 .

So T fails the second property. Conclusion: T is not a matrix transformation!

(We could also have noted T (0) 6= 0.)



Poll

Which of the following transformations are linear?

A. T

(
x1

x2

)
=

(
|x1|
x2

)
B. T

(
x1

x2

)
=

(
2x1 + x2

x1 − 2x2

)

C. T

(
x1

x2

)
=

(
x1x2

x2

)
D. T

(
x1

x2

)
=

(
2x1 + 1
x1 − 2x2

)

Poll

A. T

((
1
0

)
+

(
−1
0

))
=

(
0
0

)
6=
(

2
0

)
= T

(
1
0

)
+ T

(
−1
0

)
, so not linear.

B. Linear.

C. T

(
2

(
1
1

))
=

(
4
2

)
6= 2T

(
1
1

)
, so not linear.

D. T

(
0
0

)
=

(
1
0

)
6= 0, so not linear.

Remark: in fact, T is linear if and only if each entry of the output is a linear
function of the entries of the input, with no constant terms. Check this!



The Matrix of a Linear Transformation

We will see that a linear transformation T is a matrix transformation:
T (x) = Ax .

But what matrix does T come from? What is A?

Here’s how to compute it.



Unit Coordinate Vectors

Definition
The unit coordinate vectors in Rn are

e1 =


1
0
...
0
0

 , e2 =


0
1
...
0
0

 , . . . , en−1 =


0
0
...
1
0

 , en =


0
0
...
0
1

 .

This is what e1, e2, . . . mean,
for the rest of the class.

e1

e2

in R2 in R3

e1
e2

e3

Note: if A is an m × n matrix with columns v1, v2, . . . , vn, then Aei = vi for
i = 1, 2, . . . , n: multiplying a matrix by ei gives you the ith column. 1 2 3

4 5 6
7 8 9

1
0
0

 =

1
4
7

  1 2 3
4 5 6
7 8 9

0
1
0

 =

2
5
8

  1 2 3
4 5 6
7 8 9

0
0
1

 =

3
6
9





Linear Transformations are Matrix Transformations

Recall: A matrix A defines a linear transformation T by T (x) = Ax .

Theorem
Let T : Rn → Rm be a linear transformation. Let

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |

 .

This is an m × n matrix, and T is the matrix transformation for A: T (x) = Ax .

The matrix A is called the standard matrix for T .

Linear transformations are the same as matrix transformations.

Take-Away

Dictionary

Linear transformation
T : Rn → Rm m × n matrix A =

 | | |
T (e1) T (e2) · · · T (en)
| | |


T (x) = Ax

T : Rn → Rm m × n matrix A



Linear Transformations are Matrix Transformations
Continued

Why is a linear transformation a matrix transformation?

Suppose for simplicity that T : R3 → R2.

T

x
y
z

 = T

x

1
0
0

+ y

0
1
0

+ z

0
0
1


= T

(
xe1 + ye2 + ze3

)
= xT (e1) + yT (e2) + zT (e3)

=

 | | |
T (e1) T (e2) T (e3)
| | |

x
y
z


= A

x
y
z

 .



Linear Transformations are Matrix Transformations
Example

Before, we defined a dilation transformation T : R2 → R2 by T (x) = 1.5x .
What is its standard matrix?

T (e1) = 1.5e1 =

(
1.5
0

)
T (e2) = 1.5e2 =

(
0

1.5

)
 =⇒ A =

(
1.5 0
0 1.5

)
.

Check: (
1.5 0
0 1.5

)(
x
y

)
=

(
1.5x
1.5y

)
= 1.5

(
x
y

)
= T

(
x
y

)
.



Linear Transformations are Matrix Transformations
Example

Question
What is the matrix for the linear transformation T : R2 → R2 defined by

T (x) = x rotated counterclockwise by an angle θ?

e1

T (e1)

θ

sin(θ)

cos(θ)

e2

T (e2)

θcos(θ)

sin(θ)

T (e1) =

(
cos(θ)
sin(θ)

)
T (e2) =

(
− sin(θ)
cos(θ)

)
 =⇒ A =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

) 
θ = 90◦ =⇒

A =

(
0 −1
1 0

)
from before





Linear Transformations are Matrix Transformations
Example

Question
What is the matrix for the linear transformation T : R3 → R3 that reflects
through the xy -plane and then projects onto the yz-plane?

[interactive]

xy

yz

e1

reflect xy

xy

yz
project yz

xy

yz

T (e1) =

0
0
0

 .

http://textbooks.math.gatech.edu/ila/demos/steps.html?x=1,0,0


Linear Transformations are Matrix Transformations
Example, continued

Question
What is the matrix for the linear transformation T : R3 → R3 that reflects
through the xy -plane and then projects onto the yz-plane?

[interactive]

xy

yz

e2

reflect xy

xy

yz
project yz

xy

yz

T (e2) = e2 =

0
1
0

 .

http://textbooks.math.gatech.edu/ila/demos/steps.html?x=0,1,0


Linear Transformations are Matrix Transformations
Example, continued

Question
What is the matrix for the linear transformation T : R3 → R3 that reflects
through the xy -plane and then projects onto the yz-plane?

[interactive]

xy

yz e3
reflect xy

xy

yz
project yz

xy

yz

T (e3) =

 0
0
−1

 .

http://textbooks.math.gatech.edu/ila/demos/steps.html?x=0,0,1


Linear Transformations are Matrix Transformations
Example, continued

Question
What is the matrix for the linear transformation T : R3 → R3 that reflects
through the xy -plane and then projects onto the yz-plane?

T (e1) =

0
0
0


T (e2) =

0
1
0


T (e1) =

 0
0
−1




=⇒ A =

 0 0 0
0 1 0
0 0 −1

 .



Linear Transformations are Matrix Transformations
Example

Question
Define a linear transformation T : R3 → R2 by

T

x
y
z

 =

(
x + 2y + 3z

−y − 5z

)
.

What is the standard matrix A for T?

T (e1) = T

1
0
0

 =

(
1
0

)
T (e2) = T

0
1
0

 =

(
2
−1

)
T (e3) = T

0
0
1

 =

(
3
−5

)

=⇒ A =

(
1 2 3
0 −1 −5

)
.



Questions About Linear Transformations

A linear transformation is a matrix transformation, so questions about linear
transformations are questions about matrices.

Question
Let T : R3 → R3 be the linear transformation that reflects through the xy -plane
and then projects onto the yz-plane. Is T one-to-one?

We have T (x) = Ax for

A =

 0 0 0
0 1 0
0 0 −1

 .

This does not have a pivot in the first column, so T is not one-to-one.



Summary

I Linear transformations are the transformations that come from matrices.

I The unit coordinate vectors e1, e2, . . . are the unit vectors in the positive
direction along the coordinate axes.

I You compute the columns of the matrix for a linear transformation by
plugging in the unit coordinate vectors.

I This is useful when the transformation is specified geometrically, in terms
of a formula, or any other way that isn’t as a matrix transformation.



Section 3.4

Matrix Multiplication



Motivation

Recall: we can turn any system of linear equations into a matrix equation

Ax = b.

This notation is suggestive. Can we solve the equation by “dividing by A”?

x
??
=

b

A

Answer: Sometimes, but you have to know what you’re doing.

Today we’ll study matrix algebra: adding and multiplying matrices.

These are not so hard to do. The important thing to understand today is the
relationship between matrix multiplication and composition of transformations.



More Notation for Matrices

Let A be an m × n matrix.

We write aij for the entry in the ith row
and the jth column. It is called the ijth
entry of the matrix.

a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

am1 · · · amj · · · amn




jth column

it
h

ro
w

The entries a11, a22, a33, . . . are the diag-
onal entries; they form the main diag-
onal of the matrix.

a11 a12 a13

a21 a22 a23

( ) a11 a12

a21 a22

a31 a32

 
A diagonal matrix is a square matrix
whose only nonzero entries are on the
main diagonal.

 a11 0 0
0 a22 0
0 0 a33


The n × n identity matrix In is the di-
agonal matrix with all diagonal entries
equal to 1. It is special because Inv = v
for all v in Rn.

I3 =

 1 0 0
0 1 0
0 0 1





More Notation for Matrices
Continued

The zero matrix (of size m × n) is the
m × n matrix 0 with all zero entries. 0 =

(
0 0 0
0 0 0

)
The transpose of an m × n matrix A
is the n ×m matrix AT whose rows are
the columns of A. In other words, the ij
entry of AT is aji .

a11 a12 a13

a21 a22 a23

( )A
a11 a21

a12 a22

a13 a23




AT

flip



Matrix Multiplication

Beware: matrix multiplication is more subtle than addition and scalar
multiplication.

Let A be an m × n matrix and let B be an n × p matrix with columns
v1, v2 . . . , vp:

B =

 | | |
v1 v2 · · · vp
| | |

 .

The product AB is the m × p matrix with columns Av1,Av2, . . . ,Avp:

AB
def
=

 | | |
Av1 Av2 · · · Avp
| | |

 .
The equality is

a definition

In order for Av1,Av2, . . . ,Avp to make sense, the number of columns of A has
to be the same as the number of rows of B. Note the sizes of the product!

must be equal

Example(
1 2 3
4 5 6

) 1 −3
2 −2
3 −1

 =

( 1 2 3
4 5 6

)
·

1
2
3

 (
1 2 3
4 5 6

)
·

−3
−2
−1


=

(
14 −10
32 −28

)



The Row-Column Rule for Matrix Multiplication

Recall: A row vector of length n times a column vector of length n is a scalar:

(
a1 · · · an

)b1

...
bn

 = a1b1 + · · ·+ anbn.

Another way of multiplying a matrix by a vector is:

Ax =

 — r1 —
...

— rm —

 x =

 r1x
...

rmx

 .

On the other hand, you multiply two matrices by

AB = A

 | |
c1 · · · cp
| |

 =

 | |
Ac1 · · · Acp
| |

 .

It follows that

AB =

 — r1 —
...

— rm —


 | |

c1 · · · cp
| |

 =


r1c1 r1c2 · · · r1cp
r2c1 r2c2 · · · r2cp

...
...

...
rmc1 rmc2 · · · rmcp





The Row-Column Rule for Matrix Multiplication

The ij entry of C = AB is the ith row of A times the jth column of B:

cij = (AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj .

This is how everybody on the planet actually computes AB. Diagram
(AB = C):

a11 · · · a1k · · · a1n
...

...
...

ai1 · · · aik · · · ain
...

...
...

am1 · · · amk · · · amn


ithr

ow ·

b11 · · · b1j · · · b1p
...

...
...

bk1 · · · bkj · · · bkp
...

...
...

bn1 · · · bnj · · · bnp




jth column

=

c11 · · · c1j · · · c1p
...

...
...

ci1 · · · cij · · · cip
...

...
...

cm1 · · · cmj · · · cmp




i j entry

Example(
1 2 3
4 5 6

) 1 −3
2 −2
3 −1

 =

(
1 · 1 + 2 · 2 + 3 · 3

)
=

(
14

)
(

1 2 3
4 5 6

) 1 −3
2 −2
3 −1

 =

(
4 · 1 + 5 · 2 + 6 · 3

)
=

(
32

)



Composition of Transformations

Why is this the correct definition of matrix multiplication?

Definition
Let T : Rn → Rm and U : Rp → Rn be transformations. The composition is
the transformation

T ◦ U : Rp → Rm defined by T ◦ U(x) = T (U(x)).

This makes sense because U(x) (the output of U) is in Rn, which is the domain
of T (the inputs of T ). [interactive]

Rp

x

Rn

U(x)

Rm

T ◦ U(x)

U
T

T ◦ U

Fact: If T and U are linear then so is T ◦ U.

Guess: If A is the matrix for T , and B is the matrix for U, what is the matrix
for T ◦ U?

http://textbooks.math.gatech.edu/ila/demos/compose2d.html?mat1=1,.5,-1,1&mat2=0,-1,1,0&closed


Composition of Linear Transformations

Let T : Rn → Rm and U : Rp → Rn be linear transformations. Let A and B be
their matrices:

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |

 B =

 | | |
U(e1) U(e2) · · · U(ep)
| | |


Question
What is the matrix for T ◦ U?

We find the matrix for T ◦ U by plugging in the unit coordinate vectors:

T ◦ U(e1) = T (U(e1)) = T (Be1) = A(Be1) = (AB)e1.

U(e1) = Be1 is the first column of B

the first column of AB is A(Be1)

For any other i , the same works:

T ◦ U(ei ) = T (U(ei )) = T (Bei ) = A(Bei ) = (AB)ei .

This says that the ith column of the matrix for T ◦U is the ith column of AB.

The matrix of the composition is the product of the matrices!



Addition and Scalar Multiplication for Linear Transformations
Remark

We can also add and scalar multiply linear transformations:

T ,U : Rn → Rm T + U : Rn → Rm (T + U)(x) = T (x) + U(x).

In other words, add transformations “pointwise”.

T : Rn → Rm c in R cT : Rn → Rm (cT )(x) = c · T (x).

In other words, scalar-multiply a transformation “pointwise”.

The next slide describes these operations in terms of matrix algebra.



Addition and Scalar Multiplication for Matrices

You add two matrices component by component, like with vectors.(
a11 a12 a13

a21 a22 a23

)
+

(
b11 b12 b13

b21 b22 b23

)
=

(
a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

)
Note you can only add two matrices of the same size.

You multiply a matrix by a scalar by multiplying each component, like with
vectors.

c

(
a11 a12 a13

a21 a22 a23

)
=

(
ca11 ca12 ca13

ca21 ca22 ca23

)
.

These satisfy the expected rules, like with vectors:

A + B = B + A (A + B) + C = A + (B + C)

c(A + B) = cA + cB (c + d)A = cA + dA

(cd)A = c(dA) A + 0 = A

If linear transformations T and U have matrices A and B, respectively:

I T + U has matrix A + B.

I cT has matrix cA.



Composition of Linear Transformations
Example

Let T : R3 → R2 and U : R2 → R3 be the matrix transformations

T (x) =

(
1 −1 0
0 1 1

)
x U(x) =

 1 0
0 1
1 1

 x .

Then the matrix for T ◦ U is(
1 −1 0
0 1 1

) 1 0
0 1
1 1

 =

(
1 −1
1 2

)
[interactive]

http://textbooks.math.gatech.edu/ila/demos/compose3d.html?closed&mat2=1,-1,0:0,1,1&mat1=1,0:0,1:1,1&range=3


Composition of Linear Transformations
Another Example

Let T : R2 → R2 be rotation by 45◦, and let U : R2 → R2 scale the
x-coordinate by 1.5. Let’s compute their standard matrices A and B:

T (e1)

1√
2

1√
2

45

T (e1) =
1√
2

(
1
1

)
T (e2) =

1√
2

(
−1
1

)
T (e2)

1√
2

1√
2

45

U(e1)

U(e1) =

(
1.5
0

)
U(e2) =

(
0
1

) U(e2)

=⇒ A =
1√
2

(
1 −1
1 1

)
B =

(
1.5 0
0 1

)



Composition of Linear Transformations
Another example, continued

So the matrix C for T ◦ U is

C = AB =
1√
2

(
1 −1
1 1

)(
1.5 0
0 1

)
=

(
1√
2

(
1 −1
1 1

)(
1.5
0

)
1√
2

(
1 −1
1 1

)(
0
1

))
=

1√
2

(
1.5 −1
1.5 1

)
.

Check: [interactive: e1] [interactive: e2]

e1 U(e1)
T (U(e1)) T ◦ U(e1) =

1√
2

(
1.5
1.5

)

e2 U(e2) T (U(e2)) T ◦ U(e2) =
1√
2

(
−1
1

)

=⇒ C =
1√
2

(
1.5 −1
1.5 1

)
"

http://textbooks.math.gatech.edu/ila/demos/compose2d.html?closed&mat2=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)&mat1=1.5,0,0,1&vec=1,0&range=2
http://textbooks.math.gatech.edu/ila/demos/compose2d.html?closed&mat2=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)&mat1=1.5,0,0,1&vec=0,1&range=2


Composition of Linear Transformations
Another example

Let T : R3 → R3 be projection onto the yz-plane, and let U : R3 → R3 be
reflection over the xy -plane. Let’s compute their standard matrices A and B:

xy

yz

e1

T (e1)

xy

yz

T (e2)
xy

yz
T (e3)

A =

 0 0 0
0 1 0
0 0 1



xy

yz

U(e1)
xy

yz

U(e2)
xy

yz
e3

U(e3)

B =

 1 0 0
0 1 0
0 0 −1





Composition of Linear Transformations
Another example, continued

So the matrix C for T ◦ U is

C = AB =

 0 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 −1

 =

 0 0 0
0 1 0
0 0 −1

 .

Check: we did this last time "
[interactive: e1] [interactive: e2] [interactive: e3]

http://textbooks.math.gatech.edu/ila/demos/compose3d.html?x=1,0,0&mat1=0,0,0:0,1,0:0,0,1&mat2=1,0,0:0,1,0:0,0,-1&range=2
http://textbooks.math.gatech.edu/ila/demos/compose3d.html?x=0,1,0&mat1=0,0,0:0,1,0:0,0,1&mat2=1,0,0:0,1,0:0,0,-1&range=2
http://textbooks.math.gatech.edu/ila/demos/compose3d.html?x=0,0,1&mat1=0,0,0:0,1,0:0,0,1&mat2=1,0,0:0,1,0:0,0,-1&range=2


Poll

Do there exist nonzero matrices A and B with AB = 0?

Poll

Yes! Here’s an example:(
1 0
1 0

)(
0 0
1 1

)
=

((
1 0
1 0

)(
0
1

) (
1 0
1 0

)(
0
1

))
=

(
0 0
0 0

)
.



Properties of Matrix Multiplication

Mostly matrix multiplication works like you’d expect. Suppose A has size
m × n, and that the other matrices below have the right size to make
multiplication work.

A(BC) = (AB)C A(B + C) = (AB + AC)

(B + C)A = BA + CA c(AB) = (cA)B

c(AB) = A(cB) ImA = A

AIn = A

Most of these are easy to verify.

Associativity is A(BC) = (AB)C . It is a pain to verify using the row-column
rule! Much easier: use associativity of linear transformations:

S ◦ (T ◦ U) = (S ◦ T ) ◦ U.

This is a good example of an instance where having a conceptual viewpoint
saves you a lot of work.

Recommended: Try to verify all of them on your own.



Properties of Matrix Multiplication
Caveats

Warnings!

I AB is usually not equal to BA.(
0 −1
1 0

)(
2 0
0 1

)
=

(
0 −1
2 0

) (
2 0
0 1

)(
0 −1
1 0

)
=

(
0 −2
1 0

)
In fact, AB may be defined when BA is not.

I AB = AC does not imply B = C , even if A 6= 0.(
1 0
0 0

)(
1 2
3 4

)
=

(
1 2
0 0

)
=

(
1 0
0 0

)(
1 2
5 6

)

I AB = 0 does not imply A = 0 or B = 0.(
1 0
1 0

)(
0 0
1 1

)
=

(
0 0
0 0

)



Powers of a Matrix

Suppose A is a square matrix.

Then A · A makes sense, and has the same size.

Then A · (A · A) also makes sense and has the same size.

Definition
Let n be a positive whole number and let A be a square matrix. The nth
power of A is the product

An = A · A · · · · A︸ ︷︷ ︸
n times

Example

A =

(
1 1
0 1

)
A2 =

(
1 1
0 1

)(
1 1
0 1

)
=

(
1 2
0 1

)
A3 =

(
1 2
0 1

)(
1 1
0 1

)
=

(
1 3
0 1

)
· · · An =

(
1 n − 1
0 1

)(
1 1
0 1

)
=

(
1 n
0 1

)



Summary

I The product of an m× n matrix and an n× p matrix is an m× p matrix. I
showed you two ways of computing the product.

I Composition of linear transformations corresponds to multiplication of
matrices.

I You have to be careful when multiplying matrices together, because things
like commutativity and cancellation fail.

I You can take powers of square matrices.



Section 3.5 and 3.6

Matrix Inverses and the Invertible Matrix Theorem



The Definition of Inverse

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the
number b such that ab = 1. We define the inverse of a matrix in almost the
same way.

Definition
Let A be an n × n square matrix. We say A is invertible (or nonsingular) if
there is a matrix B of the same size, such that

AB = In and BA = In.

identity matrix
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

In this case, B is the inverse of A, and is written A−1.

Example
A =

(
2 1
1 1

)
B =

(
1 −1
−1 2

)
.

I claim B = A−1. Check:

AB =

(
2 1
1 1

)(
1 −1
−1 2

)
=

(
1 0
0 1

)
BA =

(
1 −1
−1 2

)(
2 1
1 1

)
=

(
1 0
0 1

)
.
"



Poll

Do there exist two matrices A and B such that AB is the identity,
but BA is not? If so, find an example. (Both products have to
make sense.)

Poll

Yes, for instance: A =

(
1 0 0
0 1 0

)
B =

 1 0
0 1
0 0

.

If A and B are square matrices, then

AB = In if and only if BA = In.

So in this case you only have to check one.

However



Solving Linear Systems via Inverses
Solving Ax = b by “dividing by A”

Theorem
If A is invertible, then Ax = b has exactly one solution for every b, namely:

x = A−1b.

Why? Divide by A!

Ax = b A−1(Ax) = A−1b (A−1A)x = A−1b
Inx = A−1b x = A−1b.

Inx = x for every x

If A is invertible and you know its inverse, then the
easiest way to solve Ax = b is by “dividing by A”:

x = A−1b.

Important

This is very convenient when you have to vary b!



Solving Linear Systems via Inverses
Example

Example

Solve the system

2x1 + 3x2 + 2x3 = 1

x1 + 3x3 = 1

2x1 + 2x2 + 3x3 = 1

using

 2 3 2
1 0 3
2 2 3

−1

=

−6 −5 9
3 2 −4
2 2 −3

 .

Answer:

x1

x2

x3

 =

 2 3 2
1 0 3
2 2 3

−11
1
1

 =

−6 −5 9
3 2 −4
2 2 −3

1
1
1

 =

−2
1
1

 .

The advantage of using inverses is it doesn’t matter what’s on the right-hand
side of the = :

2x1 + 3x2 + 2x3 = b1

x1 + 3x3 = b2

2x1 + 2x2 + 3x3 = b3

=⇒

x1

x2

x3

 =

 2 3 2
1 0 3
2 2 3

−1b1

b2

b3



=

−6b1 − 5b2 + 9b3

3b1 + 2b2 − 4b3

2b1 + 2b2 − 3b3

 .



Some Facts

Say A and B are invertible n × n matrices.

1. A−1 is invertible and its inverse is (A−1)−1 = A.

2. AB is invertible and its inverse is (AB)−1 = A−1B−1 B−1A−1.

Why? (B−1A−1)AB = B−1(A−1A)B = B−1InB = B−1B = In.

3. AT is invertible and (AT )−1 = (A−1)T .

Why? AT (A−1)T = (A−1A)T = ITn = In.

Question: If A,B,C are invertible n × n matrices, what is the inverse of ABC?

i. A−1B−1C−1 ii. B−1A−1C−1 iii. C−1B−1A−1 iv. C−1A−1B−1

Check:
(ABC)(C−1B−1A−1) = AB(CC−1)B−1A−1 = A(BB−1)A−1

= AA−1 = In.

In general, a product of invertible matrices is invertible, and the inverse is the
product of the inverses, in the reverse order.



Computing A−1

The 2× 2 case

Let A =

(
a b
c d

)
. The determinant of A is the number

det(A) = det

(
a b
c d

)
= ad − bc.

Facts:

1. If det(A) 6= 0, then A is invertible and A−1 =
1

det(A)

(
d −b
−c a

)
.

2. If det(A) = 0, then A is not invertible.

Why 1?(
a b
c d

)(
d −b
−c a

)
=

(
ad − bc 0

0 ad − bc

)
=

(
d −b
−c a

)(
a b
c d

)
So we get the identity by dividing by ad − bc.

Example

det

(
1 2
3 4

)
= 1 · 4− 2 · 3 = −2

(
1 2
3 4

)−1

= − 1

2

(
4 −2
−3 1

)
.



Computing A−1

In general

Let A be an n × n matrix. Here’s how to compute A−1.

1. Row reduce the augmented matrix (A | In ).

2. If the result has the form ( In | B ), then A is invertible and B = A−1.

3. Otherwise, A is not invertible.

Example

A =

 1 0 4
0 1 2
0 −3 −4


[interactive]

http://textbooks.math.gatech.edu/ila/demos/rrinter.html?mat=1,0,4,1,0,0:0,1,2,0,1,0:0,-3,-4,0,0,1&augment=2


Computing A−1

Example

 1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1

 R3 = R3 + 3R2

 1 0 4 1 0 0
0 1 2 0 1 0
0 0 2 0 3 1


R1 = R1 − 2R3

R2 = R2 − R3

 1 0 0 1 −6 −2
0 1 0 0 −2 −1
0 0 2 0 3 1


R3 = R3 ÷ 2

 1 0 0 1 −6 −2
0 1 0 0 −2 −1
0 0 1 0 3/2 1/2



So

 1 0 4
0 1 2
0 −3 −4

−1

=

 1 −6 −2
0 −2 −1
0 3/2 1/2

 .

Check:

 1 0 4
0 1 2
0 −3 −4

 1 −6 −2
0 −2 −1
0 3/2 1/2

 =

 1 0 0
0 1 0
0 0 1

 "



Why Does This Work?

We can think of the algorithm as simultaneously solving the equations

Ax1 = e1 :

 1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1


Ax2 = e2 :

 1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1


Ax3 = e3 :

 1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1


Now note A−1ei = A−1(Axi ) = xi , and xi is the ith column in the augmented
part. Also A−1ei is the ith column of A−1.



Invertible Transformations

Definition
A transformation T : Rn → Rn is invertible if there exists another
transformation U : Rn → Rn such that

T ◦ U(x) = x and U ◦ T (x) = x

for all x in Rn. In this case we say U is the inverse of T , and we write
U = T−1.

In other words, T (U(x)) = x , so T “undoes” U, and likewise U “undoes” T .

A transformation T is invertible if and
only if it is both one-to-one and onto.

Fact

If T is one-to-one and onto, this means for every y in Rn, there is a unique x in
Rn such that T (x) = y . Then T−1(y) = x .



Invertible Transformations
Examples

Let T = counterclockwise rotation in the plane by 45◦. What is T−1?

T T−1

T−1 is clockwise rotation by 45◦. [interactive: T−1 ◦ T ] [interactive: T ◦ T−1]

Let T = shrinking by a factor of 2/3 in the plane. What is T−1?

T T−1

T−1 is stretching by 3/2. [interactive: T−1 ◦ T ] [interactive: T ◦ T−1]

Let T = projection onto the x-axis. What is T−1? It is not invertible: you
can’t undo it.

http://textbooks.math.gatech.edu/ila/demos/compose2d.html?closed&mat2=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)&mat1=1/sqrt(2),1/sqrt(2),-1/sqrt(2),1/sqrt(2)&show1
http://textbooks.math.gatech.edu/ila/demos/compose2d.html?closed&mat2=1/sqrt(2),1/sqrt(2),-1/sqrt(2),1/sqrt(2)&mat1=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)&show1
http://textbooks.math.gatech.edu/ila/demos/compose2d.html?closed&mat1=2/3,0,0,2/3&mat2=1.5,0,0,1.5&show1
http://textbooks.math.gatech.edu/ila/demos/compose2d.html?closed&mat2=2/3,0,0,2/3&mat1=1.5,0,0,1.5&show1


Invertible Linear Transformations

If T : Rn → Rn is an invertible linear transformation with matrix A, then what
is the matrix for T−1?

Let B be the matrix for T−1. We know T ◦ T−1 has matrix AB, so for all x ,

ABx = T ◦ T−1(x) = x .

Hence AB = In, so B = A−1.

If T is an invertible linear transformation with matrix A, then

T−1 is an invertible linear transformation with matrix A−1.

Fact



Invertible Linear Transformations
Examples

Let T = counterclockwise rotation in the plane by 45◦. Its matrix is

A =

(
cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

)
=

1√
2

(
1 −1
1 1

)
.

Then T−1 = counterclockwise rotation by −45◦. Its matrix is

B =

(
cos(−45◦) − sin(−45◦)
sin(−45◦) cos(−45◦)

)
=

1√
2

(
1 1
−1 1

)
.

Check: AB =
1

2

(
1 −1
1 1

)(
1 1
−1 1

)
=

(
1 0
0 1

)
"

Let T = shrinking by a factor of 2/3 in the plane. Its matrix is

A =

(
2/3 0

0 2/3

)
Then T−1 = stretching by 3/2. Its matrix is

B =

(
3/2 0

0 3/2

)
Check: AB =

(
2/3 0

0 2/3

)(
3/2 0

0 3/2

)
=

(
1 0
0 1

)
"



The Invertible Matrix Theorem
A.K.A. The Really Big Theorem of Math 1553

The Invertible Matrix Theorem
Let A be an n × n matrix, and let T : Rn → Rn be the linear transformation
T (x) = Ax . The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. The reduced row echelon form of A is the identity matrix In.
4. A has n pivots.
5. Ax = 0 has no solutions other than the trivial solution.
6. Nul(A) = {0}.
7. nullity(A) = 0.
8. The columns of A are linearly independent.
9. The columns of A form a basis for Rn.

10. T is one-to-one.
11. Ax = b is consistent for all b in Rn.
12. Ax = b has a unique solution for each b in Rn.
13. The columns of A span Rn.
14. ColA = Rn.
15. dim ColA = n.
16. rankA = n.
17. T is onto.
18. There exists a matrix B such that AB = In.
19. There exists a matrix B such that BA = In.
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The Invertible Matrix Theorem
Summary

There are two kinds of square matrices:

1. invertible (non-singular), and

2. non-invertible (singular).

For invertible matrices, all statements of the Invertible Matrix Theorem are
true.

For non-invertible matrices, all statements of the Invertible Matrix Theorem are
false.

Strong recommendation: If you want to understand invertible matrices, go
through all of the conditions of the IMT and try to figure out on your own (or
at least with help from the book) why they’re all equivalent.

You know enough at this point to be able to reduce all of the statements to
assertions about the pivots of a square matrix.



The Invertible Matrix Theorem
Example

Question: Is this matrix invertible?

A =

 1 2 −1
2 4 7
−2 −4 1


The second column is a multiple of the first, so the columns are linearly
dependent.

A does not satisfy condition (8) of the IMT, so it is not invertible.



The Invertible Matrix Theorem
Another Example

Problem: Let A be a 3× 3 matrix such that

A

1
7
0

 = A

 2
0
−1

 .

Show that the rank of A is at most 2.

If we set

b = A

1
7
0

 = A

 2
0
−1

 ,

then Ax = b has multiple solutions, so it does not satisfy condition (12) of the
IMT.

Hence it also does not satisfy condition (16), so the rank is not 3.

In any case the rank is at most 3, so it must be less than 3.



Summary

I The inverse of a square matrix A is a matrix A−1 such that AA−1 = In
(equivalently, A−1A = In).

I If A is invertible, then you can solve Ax = b by “dividing by A”:
b = A−1x . There is a unique solution x = A−1b for every x .

I You compute A−1 (and whether A is invertible) by row reducing
(
A In

)
.

There’s a trick for computing the inverse of a 2× 2 matrix in terms of
determinants.

I A linear transformation T is invertible if and only if its matrix A is
invertible, in which case A−1 is the matrix for T−1.

I The Invertible Matrix theorem is a list of a zillion equivalent conditions for
invertibility that you have to learn (and should understand, since it’s well
within what we’ve covered in class so far).



Chapter 4

Determinants



Section 4.1

Determinants: Definition



Orientation

Recall: This course is about learning to:

I Solve the matrix equation Ax = b
We’ve said most of what we’ll say about this topic now.

I Solve the matrix equation Ax = λx (eigenvalue problem)
We are now aiming at this.

I Almost solve the equation Ax = b
This will happen later.

The next topic is determinants.

This is a completely magical function that takes a square matrix and gives you
a number.

It is a very complicated function—the formula for the determinant of a 10× 10
matrix has 3, 628, 800 summands—so instead of writing down the formula,
we’ll give other ways to compute it.

Today is mostly about the theory of the determinant; in the next lecture we will
focus on computation.



A Definition of Determinant

Definition
The determinant is a function

det : {n × n matrices} −→ R

with the following properties:

determinants are only for square matrices!

1. If you do a row replacement on a matrix, the determinant doesn’t change.

2. If you scale a row by c, the determinant is multiplied by c.

3. If you swap two rows of a matrix, the determinant is multiplied by −1.

4. det(In) = 1.

Example: (
2 1
1 4

) R1 ←→ R2
(

1 4
2 1

)
det = 7"

R2 = R2 − 2R1
(

1 4
0 −7

)
det = −7

R2 = R2 ÷−7 (
1 4
0 1

)
det = 1

R1 = R1 − 4R2
(

1 0
0 1

)
det = 1



A Definition of Determinant

Definition
The determinant is a function

det : {n × n matrices} −→ R

with the following properties:

determinants are only for square matrices!

1. If you do a row replacement on a matrix, the determinant doesn’t change.

2. If you scale a row by c, the determinant is multiplied by c.

3. If you swap two rows of a matrix, the determinant is multiplied by −1.

4. det(In) = 1.

This is a definition because it tells you how to compute the determi-
nant: row reduce!

It’s not at all obvious that you get the same determinant if you row reduce in
two different ways, but this is magically true!



Special Cases

If A has a zero row, then det(A) = 0.

Special Case 1

Why?  1 2 3
0 0 0
7 8 9

 R2 = −R2

 1 2 3
0 0 0
7 8 9


The determinant of the second matrix is negative the determinant of the first
(property 3), so

det

 1 2 3
0 0 0
7 8 9

 = − det

 1 2 3
0 0 0
7 8 9

 .

This implies the determinant is zero.



Special Cases

If A is upper-triangular, then the determinant is the product of the di-
agonal entries:

det

 a ? ?
0 b ?
0 0 c

 = abc.

Special Case 2

Upper-triangular means the only nonzero entries are on or above the diagonal.

Why?

I If one of the diagonal entries is zero, then the matrix has fewer than n
pivots, so the RREF has a row of zeros. (Row operations don’t change
whether the determinant is zero.)

I Otherwise, a ? ?
0 b ?
0 0 c

 scale by
a−1, b−1, c−1

 1 ? ?
0 1 ?
0 0 1

 row
replacements

 1 0 0
0 1 0
0 0 1


det = abc det = 1 det = 1



Computing Determinants
Method 1

Theorem
Let A be a square matrix. Suppose you do some number of row operations on
A to get a matrix B in row echelon form. Then

det(A) = (−1)r
(product of the diagonal entries of B)

(product of the scaling factors)
,

where r is the number of row swaps.

Why? Since B is in REF, it is upper-triangular, so its determinant is the
product of its diagonal entries. You changed the determinant by (−1)r and the
product of the scaling factors when going from A to B.

Remark
This is generally the fastest way to compute a determinant of a large matrix,
either by hand or by computer.

Row reduction is O(n3); cofactor expansion (next time) is O(n!) ∼ O(nn√n).

This is important in real life, when you’re usually working with matrices with a
gazillion columns.



Computing Determinants
Example

 0 −7 −4
2 4 6
3 7 −1

 R1 ←→ R2

 2 4 6
0 −7 −4
3 7 −1

 r = 1

R1 = R1 ÷ 2
 1 2 3

0 −7 −4
3 7 −1

 r = 1
scaling factors = 1

2

R3 = R3 − 3R1

 1 2 3
0 −7 −4
0 1 −10

 r = 1
scaling factors = 1

2

R2 ←→ R3

 1 2 3
0 1 −10
0 −7 −4

 r = 2
scaling factors = 1

2

R3 = R3 + 7R2

 1 2 3
0 1 −10
0 0 −74

 r = 2
scaling factors = 1

2

=⇒ det

 0 −7 −4
1 4 6
3 7 −1

 = (−1)2 1 · 1 · −74

1/2
= −148.



Computing Determinants
2× 2 Example

Let’s compute the determinant of A =

(
a b
c d

)
, a general 2× 2 matrix.

I If a = 0, then

det

(
a b
c d

)
= det

(
0 b
c d

)
= − det

(
c d
0 b

)
= −bc.

I Otherwise,

det

(
a b
c d

)
= a · det

(
1 b/a
c d

)
= a · det

(
1 b/a
0 d − c · b/a

)
= a · 1 · (d − bc/a) = ad − bc.

In both cases, the determinant magically turns out to be

det

(
a b
c d

)
= ad − bc.



Poll

True or false:
(a) Row operations can change the determinant of a matrix.

(b) Row operations can change whether the determinant of a
matrix is equal to zero.

Poll

(a) True: scaling and row swaps change the determinant by a nonzero number
and by −1, respectively.

(b) False: all row operations multiply the determinant by a nonzero number.



Determinants and Invertibility

Theorem
A square matrix A is invertible if and only if det(A) is nonzero.

Why?

I If A is invertible, then its reduced row echelon form is the identity matrix,
which has determinant equal to 1.

I If A is not invertible, then its reduced row echelon form has a zero row,
hence has zero determinant.

I Doing row operations doesn’t change whether the determinant is zero.



Determinants and Products

Theorem
If A and B are two n × n matrices, then

det(AB) = det(A) · det(B).

Why? If B is invertible, we can define

f (A) =
det(AB)

det(B)
.

Note f (In) = det(InB)/ det(B) = 1. Check that f satisfies the same properties
as det with respect to row operations. So

det(A) = f (A) =
det(AB)

det(B)
=⇒ det(AB) = det(A) det(B).

What about if B is not invertible?

Theorem

If A is invertible, then det(A−1) =
1

det(A)
.

Why? In = AB =⇒ 1 = det(In) = det(AB) = det(A) det(B).



Transposes
Review

Recall: The transpose of an m × n matrix A is the n ×m matrix AT whose
rows are the columns of A. In other words, the ij entry of AT is aji .

a11 a12 a13

a21 a22 a23

( )A
a11 a21

a12 a22

a13 a23




AT

flip



Determinants and Transposes

Theorem
If A is a square matrix, then

det(A) = det(AT ),

where AT is the transpose of A.

Example: det

(
1 2
3 4

)
= det

(
1 3
2 4

)
.

As a consequence, det behaves the same way with respect to column
operations as row operations.

Corollary an immediate consequence of a theorem

If A has a zero column, then det(A) = 0.

Corollary

The determinant of a lower-triangular matrix is the product of the diagonal
entries.

(The transpose of a lower-triangular matrix is upper-triangular.)



Section 4.3

Determinants and Volumes



Determinants and Volumes

Now we discuss a completely different description of (the absolute value of) the
determinant, in terms of volumes.

This is a crucial component of the change-of-variables formula in multivariable
calculus.

The columns v1, v2, . . . , vn of an n × n matrix A give you n vectors in Rn.
These determine a parallelepiped P.

v1

v2

P

v1

v2

v3
P

Theorem
Let A be an n × n matrix with columns v1, v2, . . . , vn, and let P be the
parallelepiped determined by A. Then

(volume of P) = | det(A)|.



Determinants and Volumes

Theorem
Let A be an n × n matrix with columns v1, v2, . . . , vn, and let P be the
parallelepiped determined by A. Then

(volume of P) = | det(A)|.

Sanity check: the volume of P is zero ⇐⇒ the columns are linearly dependent
(P is “flat”) ⇐⇒ the matrix A is not invertible.

Why is the theorem true? You only have to check that the volume behaves the
same way under row operations as | det | does.

Note that the volume of the unit cube (the parallelepiped defined by the
identity matrix) is 1.



Determinants and Volumes
Examples in R2

det

(
1 −2
0 3

)
= 3

volume = 3

det

(
−1 1
1 1

)
= −2

(Should the volume really be −2?)

volume = 2

det

(
1 2
1 2

)
= 0

volume = 0



Determinants and Volumes

Theorem
Let A be an n × n matrix with columns v1, v2, . . . , vn, and let P be the
parallelepiped determined by A. Then

(volume of P) = | det(A)|.

This is even true for curvy shapes, in the following sense.

Theorem
Let A be an n × n matrix, and let T (x) = Ax . If S is any region in Rn, then

(volume of T (S)) = | det(A)| (volume of S).

If S is the unit cube, then T (S) is the parallelepiped defined by the columns of
A, since the columns of A are T (e1),T (e2), . . . ,T (en). In this case, the second
theorem is the same as the first.

e1

e2 S

vol(S) = 1

A =

(
1 1
−1 1

)
det(A) = 2

T

T (e1)

T (e2)

T (S)

vol(T (S)) = 2



Determinants and Volumes

Theorem
Let A be an n × n matrix, and let T (x) = Ax . If S is any region in Rn, then

(volume of T (S)) = | det(A)| (volume of S).

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is
scaled by | det(A)|; then you use calculus to reduce to the previous situation!

e1

e2 S

vol(S) = 1

A =

(
1 1
−1 1

)
det(A) = 2

T

T (e1)

T (e2)

T (S)

vol(T (S)) = 2

S

vol(T (S)) = 2 vol(S)

T

T (S)



Determinants and Volumes
Example

Theorem
Let A be an n × n matrix, and let T (x) = Ax . If S is any region in Rn, then

(volume of T (S)) = | det(A)| (volume of S).

Example: Let S be the unit disk in R2, and let T (x) = Ax for

A =

(
2 1
1 2

)
.

Note that det(A) = 3.

S

vol(S) = π

A =

(
2 1
1 2

)
det(A) = 3

T

T (S)

vol(T (S)) = 3π



Summary

Magical Properties of the Determinant

1. There is one and only one function det : {square matrices} → R satisfying
the properties (1)–(4) on the second slide.

2. A is invertible if and only if det(A) 6= 0.

3. The determinant of an upper- or lower-triangular matrix is the product of
the diagonal entries.

4. If we row reduce A to row echelon form B using r swaps, then

det(A) = (−1)r
(product of the diagonal entries of B)

(product of the scaling factors)
.

5. det(AB) = det(A) det(B) and det(A−1) = det(A)−1.

6. det(A) = det(AT ).

7. | det(A)| is the volume of the parallelepiped defined by the columns of A.

8. If A is an n × n matrix with transformation T (x) = Ax , and S is a subset
of Rn, then the volume of T (S) is | det(A)| times the volume of S . (Even
for curvy shapes S .)
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Section 4.2

Cofactor Expansions



Orientation

Last time: we learned. . .

I . . . the definition of the determinant.

I . . . to compute the determinant using row reduction.
I . . . all sorts of magical properties of the determinant, like

I det(AB) = det(A) det(B)
I the determinant computes volumes
I nonzero determinants characterize invertability
I etc.

Today: we will learn. . .

I Special formulas for 2× 2 and 3× 3 matrices.

I How to compute determinants using cofactor expansions.

I How to compute inverses using determinants.



Determinants of 2 × 2 Matrices
Reminder

We already have a formula in the 2× 2 case:

det

(
a b
c d

)
= ad − bc.



Determinants of 3 × 3 Matrices

Here’s the formula:

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33

How on earth do you remember this? Draw a bigger matrix, repeating the first
two columns to the right:

+

∣∣∣∣∣∣
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

∣∣∣∣∣∣−
∣∣∣∣∣∣
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

∣∣∣∣∣∣
Then add the products of the downward diagonals, and subtract the product of
the upward diagonals. For example,

det

 5 1 0
−1 3 2

4 0 −1

 =

∣∣∣∣∣∣
5 1 0 5 1
−1 3 2 −1 3

4 0 −1 4 0

∣∣∣∣∣∣ = −15 + 8 + 0− 0− 0− 1 = −8



Cofactor Expansions

When n ≥ 4, the determinant isn’t just a sum of products of diagonals. The
formula is recursive: you compute a larger determinant in terms of smaller ones.

First some notation. Let A be an n × n matrix.

Aij = ijth minor of A

= (n − 1)× (n − 1) matrix you get by deleting the ith row and jth column

Cij = (−1)i+j detAij

= ijth cofactor of A

The signs of the cofactors follow a checkerboard pattern:
+++ −−− +++ −−−
−−− +++ −−− +++
+++ −−− +++ −−−
−−− +++ −−− +++

 ± in the ij entry is the sign of Cij

Theorem
The determinant of an n × n matrix A is

det(A) =
n∑

j=1

a1jC1j = a11C11 + a12C12 + · · ·+ a1nC1n.

This formula is called cofactor expansion along the first row.



Cofactor Expansions
1× 1 Matrices

This is the beginning of the recursion.

det( a11 ) = a11.



Cofactor Expansions
2× 2 Matrices

A =

(
a11 a12

a21 a22

)
The minors are:

A11 =

(
a11 a12

a21 a22

)
= ( a22 ) A12 =

(
a11 a12

a21 a22

)
= ( a21 )

A21 =

(
a11 a12

a21 a22

)
= ( a12 ) A22 =

(
a11 a12

a21 a22

)
= ( a11 )

The cofactors are

C11 = + detA11 = a22 C12 = − detA12 = −a21

C21 = − detA21 = −a12 C22 = + detA22 = a11

The determinant is

detA = a11C11 + a12C12 = a11a22 − a12a21.



Cofactor Expansions
3× 3 Matrices

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


The top row minors and cofactors are:

A11 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

(
a22 a23

a32 a33

)
C11 = + det

(
a22 a23

a32 a33

)

A12 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

(
a21 a23

a31 a33

)
C12 = − det

(
a21 a23

a31 a33

)

A13 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

(
a21 a22

a31 a32

)
C13 = + det

(
a21 a22

a31 a32

)

The determinant is magically the same formula as before:

detA = a11C11 + a12C12 + a13C13

= a11 det

(
a22 a23

a32 a33

)
− a12 det

(
a21 a23

a31 a33

)
+ a13 det

(
a21 a22

a31 a32

)



Cofactor Expansions
Example

det

 5 1 0
−1 3 2

4 0 −1

 = 5 · det

 5 1 0
−1 −3 2

4 0 −1

− 1 · det

 5 1 0
−1 3 2

4 0 −1


+ 0 · det

 5 1 0
−1 3 2

4 0 −1


= 5 · det

(
3 2
0 −1

)
− 1 · det

(
−1 2
4 −1

)
+ 0 · det

(
−1 3
4 0

)
= 5 · (−3− 0)− 1 · (1− 8)

= −15 + 7 = −8



2n − 1 More Formulas for the Determinant

Recall: the formula

det(A) =
n∑

j=1

a1jC1j = a11C11 + a12C12 + · · ·+ a1nC1n.

is called cofactor expansion along the first row. Actually, you can expand
cofactors along any row or column you like!

Magical Theorem

The determinant of an n × n matrix A is

detA =
n∑

j=1

aijCij for any fixed i

detA =
n∑

i=1

aijCij for any fixed j

These formulas are called cofactor expansion along the ith row, respectively,
jth column.

In particular, you get the same answer whichever row or column you choose.

Try this with a row or a column with a lot of zeros.



Cofactor Expansion
Example

A =

 2 1 0
1 1 0
5 9 1


It looks easiest to expand along the third column:

detA = 0 · det

(
don’t
care

)
− 0 · det

(
don’t
care

)
+ 1 · det

 2 1 0
1 1 0
5 9 1


= det

(
2 1
1 1

)
= 2− 1 = 1



Cofactor Expansion
Advice

I In general, computing a determinant by cofactor expansion is slower than
by row reduction.

I It makes sense to expand by cofactors if you have a row or column with a
lot of zeros.

I Also if your matrix has unknowns in it, since those are hard to row reduce
(you don’t know where the pivots are).

You can also use more than one method; for example:

I Use cofactors on a 4× 4 matrix but compute the minors using the 3× 3
formula.

I Do row operations to produce a row/column with lots of zeros, then
expand cofactors (but keep track of how you changed the determinant!).

Example:

det

 5 1 0
−1 3 2

4 0 −1

 R2=R2+2R3======== det

 5 1 0
7 3 0
4 0 −1


3rd column

======= (−1) det

(
5 1
7 3

)
= −8



Poll

det


0 7 2 9 8
1 3 2 7 4
0 0 0 0 3
0 0 2 1 1
0 0 0 2 5

 = ?

A. −84 B. −28 C. −7 D. 0 E. 7 F. 28 G. 84

Poll

Repeatedly expanding along the first row, you get:

det


0 7 2 9 8
1 3 2 7 4
0 0 0 0 3
0 0 2 1 1
0 0 0 2 5

 = − 1 · det

 7 2 9 8
0 0 0 3
0 2 1 1
0 0 2 5



= (−1) · 7 · det

 0 0 3
2 1 1
0 2 5

 = (−1) · 7 · 3 · det

(
2 1
0 2

)
= (−1) · 7 · 3 · 2 · 2 = −84.



A General Formula for the Inverse
Just for fun!

For 2× 2 matrices we had a nice formula for the inverse:

A =

(
a b
c d

)
=⇒ A−1 =

1

ad − bc

(
d −b
−c a

)
=

1

detA

(
C11 C21

C12 C22

)
.

Theorem
This last formula works for any n × n invertible matrix A:

A−1 =
1

detA


C11 C21 C31 · · · Cn1

C12 C22 C32 · · · Cn2

C13 C23 C33 · · · Cn3

...
...

...
. . .

...
C1n C2n C3n · · · Cnn

 =
1

detA

(
Cij

)T

Note that the cofactors are “transposed”: the (i , j) entry of the matrix is Cji .

(3, 1) entry

The proof uses Cramer’s rule.



A Formula for the Inverse
Example

Compute A−1, where A =

 1 0 1
0 1 1
1 1 0

.

The minors are:

A11 =

(
1 1
1 0

)
A12 =

(
0 1
1 0

)
A13 =

(
0 1
1 1

)
A21 =

(
0 1
1 0

)
A22 =

(
1 1
1 0

)
A23 =

(
1 0
1 1

)
A31 =

(
0 1
1 1

)
A32 =

(
1 1
0 1

)
A33 =

(
1 0
0 1

)
The cofactors are (don’t forget to multiply by (−1)i+j):

C11 = −1 C12 = 1 C13 = −1

C21 = 1 C22 = −1 C23 = −1

C31 = −1 C32 = −1 C33 = 1

The determinant is (expanding along the first row):

detA = 1 · C11 + 0 · C12 + 1 · C13 = −2



A Formula for the Inverse
Example, continued

Compute A−1, where A =

 1 0 1
0 1 1
1 1 0

.

The inverse is

A−1 =
1

detA

C11 C21 C31

C12 C22 C32

C13 C23 C33

 = −1

2

−1 1 −1
1 −1 −1
−1 −1 1

 .

Check:  1 0 1
0 1 1
1 1 0

 · −1

2

−1 1 −1
1 −1 −1
−1 −1 1

 =

 1 0 0
0 1 0
0 0 1

 . "



A Formula for the Inverse
Why?

A−1 =
1

detA


C11 C21 C31 · · · Cn1

C12 C22 C32 · · · Cn2

C13 C23 C33 · · · Cn3

...
...

...
. . .

...
C1n C2n C3n · · · Cnn


That was a lot of work! It’s way easier to compute inverses by row reduction.

I The formula is good for error estimates: the only division is by the
determinant, so if your determinant is tiny, your error bars are large.

I It’s also useful if your matrix has unknowns in it.

I It’s part of a larger picture in the theory.



Summary

We have several ways to compute the determinant of a matrix.

I Special formulas for 2× 2 and 3× 3 matrices.

These work great for small matrices.

I Cofactor expansion.

This is perfect when there is a row or column with a lot of zeros, or if your
matrix has unknowns in it.

I Row reduction.

This is the way to go when you have a big matrix which doesn’t have a
row or column with a lot of zeros.

I Any combination of the above.

Cofactor expansion is recursive, but you don’t have to use cofactor
expansion to compute the determinants of the minors! Or you can do row
operations and then a cofactor expansion.



Chapter 5

Eigenvalues and Eigenvectors



Section 5.1

Eigenvalues and Eigenvectors



A Biology Question
Motivation

In a population of rabbits:

1. half of the newborn rabbits survive their first year;

2. of those, half survive their second year;

3. their maximum life span is three years;

4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

fn = first-year rabbits in year n

sn = second-year rabbits in year n

tn = third-year rabbits in year n

The rules say:  0 6 8
1
2

0 0
0 1

2
0

fn
sn
tn

 =

fn+1

sn+1

tn+1

 .

Let A =

 0 6 8
1
2

0 0
0 1

2
0

 and vn =

fn
sn
tn

. Then Avn = vn+1. difference equation



A Biology Question
Continued

If you know v0, what is v10?

v10 = Av9 = AAv8 = · · · = A10v0.

This makes it easy to compute examples by computer: [interactive]

v0 v10 v113
7
9

 30189
7761
1844

 61316
15095
3881


1

2
3

 9459
2434
577

 19222
4729
1217


4

7
8

 28856
7405
1765

 58550
14428
3703



What do you notice about these
numbers?

1. Eventually, each segment of
the population doubles every
year: Avn = vn+1 = 2vn.

2. The ratios get close to
(16 : 4 : 1):

vn = (scalar) ·

16
4
1

 .

Translation: 2 is an eigenvalue, and

16
4
1

 is an eigenvector!

http://textbooks.math.gatech.edu/ila/demos/rabbits/book_demo.html


Eigenvectors and Eigenvalues

Definition
Let A be an n × n matrix.
Eigenvalues and eigenvectors are only for square matrices.

1. An eigenvector of A is a nonzero vector v in Rn such that
Av = λv , for some λ in R. In other words, Av is a multiple of v .

2. An eigenvalue of A is a number λ in R such that the equation
Av = λv has a nontrivial solution.

If Av = λv for v 6= 0, we say λ is the eigenvalue for v , and v is an
eigenvector for λ.

Note: Eigenvectors are by definition nonzero. Eigenvalues may be equal to
zero.

This is the most important definition in the course.



Verifying Eigenvectors

Example

A =

 0 6 8
1
2

0 0
0 1

2
0

 v =

16
4
1


Multiply:

Av =

 0 6 8
1
2

0 0
0 1

2
0

16
4
1

 =

32
8
2

 = 2v

Hence v is an eigenvector of A, with eigenvalue λ = 2.

Example

A =

(
2 2
−4 8

)
v =

(
1
1

)
Multiply:

Av =

(
2 2
−4 8

)(
1
1

)
=

(
4
4

)
= 4v

Hence v is an eigenvector of A, with eigenvalue λ = 4.



Poll

Which of the vectors

A.

(
1
1

)
B.

(
1
−1

)
C.

(
−1
1

)
D.

(
2
1

)
E.

(
0
0

)

are eigenvectors of the matrix

(
1 1
1 1

)
?

What are the eigenvalues?

Poll

(
1 1
1 1

)(
1
1

)
= 2

(
1
1

)
eigenvector with eigenvalue 2(

1 1
1 1

)(
1
−1

)
= 0

(
1
−1

)
eigenvector with eigenvalue 0(

1 1
1 1

)(
−1
1

)
= 0

(
−1
1

)
eigenvector with eigenvalue 0(

1 1
1 1

)(
2
1

)
=

(
3
3

)
not an eigenvector(

0
0

)
is never an eigenvector



Verifying Eigenvalues

Question: Is λ = 3 an eigenvalue of A =

(
2 −4
−1 −1

)
?

In other words, does Av = 3v have a nontrivial solution?
. . . does Av − 3v = 0 have a nontrivial solution?
. . . does (A− 3I )v = 0 have a nontrivial solution?

We know how to answer that! Row reduction!

A− 3I =

(
2 −4
−1 −1

)
− 3

(
1 0
0 1

)
=

(
−1 −4
−1 −4

)
Row reduce: (

−1 −4
−1 −4

) (
1 4
0 0

)
Parametric form: x = −4y ; parametric vector form:

(
x
y

)
= y

(
−4
1

)
.

Does there exist an eigenvector with eigenvalue λ = 3? Yes! Any nonzero

multiple of

(
−4
1

)
. Check:(

2 −4
−1 −1

)(
−4
1

)
=

(
−12

3

)
= 3

(
−4
1

)
. "



Eigenspaces

Definition
Let A be an n × n matrix and let λ be an eigenvalue of A. The λ-eigenspace
of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

λ-eigenspace =
{
v in Rn | Av = λv

}
=
{
v in Rn | (A− λI )v = 0

}
= Nul

(
A− λI

)
.

Since the λ-eigenspace is a null space, it is a subspace of Rn.

How do you find a basis for the λ-eigenspace? Parametric vector form!



Eigenspaces
Example

Find a basis for the 3-eigenspace of

A =

(
2 −4
−1 −1

)
.

λ

We have to solve the matrix equation A− 3I2 = 0.

A− 3I2 =

(
2 −4
−1 −1

)
−3

(
1 0
0 1

)
=

(
−1 −4
−1 −4

)
RREF

(
1 4
0 0

)
parametric form

x = −4y

parametric vector form (
x
y

)
= y

(
−4
1

)
basis

{(
−4
1

)}
.



Eigenspaces
Example

Find a basis for the 2-eigenspace of

A =

 7/2 0 3
−3/2 2 −3
−3/2 0 −1

 .

λ

A− 2I =

 3
2

0 3
− 3

2
0 −3

− 3
2

0 −3

 row reduce

 1 0 2
0 0 0
0 0 0


parametric form

x = −2z

parametric vector form
x
y
z

 = y

0
1
0

+ z

−2
0
1


basis


0

1
0

 ,

−2
0
1

 .



Eigenspaces
Example

Find a basis for the 1
2
-eigenspace of

A =

 7/2 0 3
−3/2 2 −3
−3/2 0 −1

 .

A− 1

2
I =

 3 0 3
− 3

2
3
2
−3

− 3
2

0 − 3
2

 row reduce

 1 0 1
0 1 −1
0 0 0


parametric form {

x = −z
y = z

parametric vector form
x
y
z

 = z

−1
1
1


basis


−1

1
1

 .



Eigenspaces
Example: picture

A =

 7/2 0 3
−3/2 2 −3
−3/2 0 −1

 .

We computed bases for the 2-eigenspace and the 1/2-eigenspace:

2-eigenspace:


0

1
0

 ,

−2
0
1

 1

2
-eigenspace:


−1

1
1


Hence the 2-eigenspace is a plane and the 1/2-eigenspace is a line.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?nomult


Eigenspaces
Summary

Let A be an n × n matrix and let λ be a number.

1. λ is an eigenvalue of A if and only if (A− λI )x = 0 has a
nontrivial solution, if and only if Nul(A− λI ) 6= {0}.

2. In this case, finding a basis for the λ-eigenspace of A
means finding a basis for Nul(A− λI ) as usual, i.e. by
finding the parametric vector form for the general solution
to (A− λI )x = 0.

3. The eigenvectors with eigenvalue λ are the nonzero
elements of Nul(A− λI ), i.e. the nontrivial solutions to
(A− λI )x = 0.



The Eigenvalues of a Triangular Matrix are the Diagonal Entries

We’ve seen that finding eigenvectors for a given eigenvalue is a row reduction
problem.

Finding all of the eigenvalues of a matrix is not a row reduction problem! We’ll
see how to do it in general next time. For now:

Fact: The eigenvalues of a triangular matrix are the diagonal entries.

Why? Nul(A− λI ) 6= {0} if and only if A− λI is not invertible, if and only if
det(A− λI ) = 0.

3 4 1 2
0 −1 −2 7
0 0 8 12
0 0 0 −3

− λI4 =


3− λ 4 1 2

0 −1− λ −2 7
0 0 8− λ 12
0 0 0 −3− λ

 .

The determinant is (3− λ)(−1− λ)(8− λ)(−3− λ), which is zero exactly
when λ = 3,−1, 8, or −3.



A Matrix is Invertible if and only if Zero is not an Eigenvalue

Fact: A is invertible if and only if 0 is not an eigenvalue of A.

Why?
0 is an eigenvalue of A ⇐⇒ Ax = 0x has a nontrivial solution

⇐⇒ Ax = 0 has a nontrivial solution

⇐⇒ A is not invertible.

invertible matrix theorem



Eigenvectors with Distinct Eigenvalues are Linearly Independent

Fact: If v1, v2, . . . , vk are eigenvectors of A with distinct eigenvalues λ1, . . . , λk ,
then {v1, v2, . . . , vk} is linearly independent.

Why? If k = 2, this says v2 can’t lie on the line through v1.

But the line through v1 is contained in the λ1-eigenspace, and v2 does not have
eigenvalue λ1.

In general: see §5.1 (or work it out for yourself; it’s not too hard).

Consequence: An n × n matrix has at most n distinct eigenvalues.



The Invertible Matrix Theorem
Addenda

We have a couple of new ways of saying “A is invertible” now:

The Invertible Matrix Theorem
Let A be a square n × n matrix, and let T : Rn → Rn be the linear
transformation T (x) = Ax . The following statements are equivalent.

1. A is invertible.

2. T is invertible.

3. The reduced row echelon form of A is In.

4. A has n pivots.

5. Ax = 0 has no solutions other than the trivial one.

6. Nul(A) = {0}.
7. nullity(A) = 0.

8. The columns of A are linearly independent.

9. The columns of A form a basis for Rn.

10. T is one-to-one.

11. Ax = b is consistent for all b in Rn.

12. Ax = b has a unique solution for each b in Rn.

13. The columns of A span Rn.

14. ColA = Rm.

15. dim ColA = m.

16. rankA = m.

17. T is onto.

18. There exists a matrix B such that AB = In.

19. There exists a matrix B such that BA = In.

20. The determinant of A is not equal to zero.

21. The number 0 is not an eigenvalue of A.



Summary

I Eigenvectors and eigenvalues are the most important concepts in this
course.

I Eigenvectors are by definition nonzero; eigenvalues may be zero.

I The eigenvalues of a triangular matrix are the diagonal entries.

I A matrix is invertible if and only if zero is not an eigenvalue.

I Eigenvectors with distinct eigenvalues are linearly independent.

I The λ-eigenspace is the set of all λ-eigenvectors, plus the zero vector.

I You can compute a basis for the λ-eigenspace by finding the parametric
vector form of the solutions of (A− λIn)x = 0.



Eigenvectors and Eigenvalues
Reminder

Definition
Let A be an n × n matrix.

1. An eigenvector of A is a nonzero vector v in Rn such that Av = λv , for
some λ in R.

2. An eigenvalue of A is a number λ in R such that the equation Av = λv
has a nontrivial solution.

3. If λ is an eigenvalue of A, the λ-eigenspace is the solution set of
(A− λIn)x = 0.



Eigenspaces
Geometry

An eigenvector of a matrix A is a nonzero vector v such that:

I Av is a multiple of v , which means

I Av is collinear with v , which means

I Av and v are on the same line through the origin.

Eigenvectors, geometrically

v

Av
wAw

v is an eigenvector

w is not an eigenvector



Eigenspaces
Geometry; example

Let T : R2 → R2 be reflection over the line L defined by y = −x , and let A be
the matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

L

u

Au

z

Az

v

Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

v is an eigenvector with eigenvalue −1.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be reflection over the line L defined by y = −x , and let A be
the matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

L

u

Au

z

Az

v

Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

w is an eigenvector with eigenvalue 1.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be reflection over the line L defined by y = −x , and let A be
the matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

Lu

Au

z

Az

v

Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

u is not an eigenvector.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be reflection over the line L defined by y = −x , and let A be
the matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

L

u

Au

z

Az

v

Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

Neither is z .

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be reflection over the line L defined by y = −x , and let A be
the matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

L

u

Au

z

Az

v

Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

The 1-eigenspace is L
(all the vectors x where Ax = x).

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be reflection over the line L defined by y = −x , and let A be
the matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

L

u

Au

z

Az

v

Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

The (−1)-eigenspace is the line y = x
(all the vectors x where Ax = −x).

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be the vertical projection onto the x-axis, and let A be the
matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

u

Au

z

Az

v

Av

w Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

v is an eigenvector with eigenvalue 0.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,0:0,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be the vertical projection onto the x-axis, and let A be the
matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

u

Au

z

Az

v

Av

w Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

w is an eigenvector with eigenvalue 1.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,0:0,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be the vertical projection onto the x-axis, and let A be the
matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

u

Au

z

Az

v

Av
w Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

u is not an eigenvector.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,0:0,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be the vertical projection onto the x-axis, and let A be the
matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

u

Au

z

Az

v

Av
w Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

Neither is z .

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,0:0,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be the vertical projection onto the x-axis, and let A be the
matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

u

Au

z

Az

v

Av
w Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

The 1-eigenspace is the x-axis
(all the vectors x where Ax = x).

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,0:0,0&nomult


Eigenspaces
Geometry; example

Let T : R2 → R2 be the vertical projection onto the x-axis, and let A be the
matrix for T .

Question: What are the eigenvalues and eigenspaces of A? No computations!

u

Au

z

Az

v

Av
w Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

The 0-eigenspace is the y -axis
(all the vectors x where Ax = 0x).

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,0:0,0&nomult


Eigenspaces
Geometry; example

Let

A =

(
1 1
0 1

)
,

so T (x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

u Au

v
Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

Vectors v above the x-axis are moved
right but not up. . .

so they’re not eigenvectors.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,1:1,0&nomult


Eigenspaces
Geometry; example

Let

A =

(
1 1
0 1

)
,

so T (x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

u Au

v
Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

Vectors w below the x-axis are moved
left but not down. . .

so they’re not eigenvectors

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,1:1,0&nomult


Eigenspaces
Geometry; example

Let

A =

(
1 1
0 1

)
,

so T (x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

u Au

v
Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

u is an eigenvector with eigenvalue 1.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,1:1,0&nomult


Eigenspaces
Geometry; example

Let

A =

(
1 1
0 1

)
,

so T (x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

u Au

v
Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

The 1-eigenspace is the x-axis
(all the vectors x where Ax = x).

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,1:1,0&nomult


Eigenspaces
Geometry; example

Let

A =

(
1 1
0 1

)
,

so T (x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

u Au

v
Av

w
Aw

Does anyone see any eigenvectors
(vectors that don’t move off their line)?

There are no other eigenvectors.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1,1:1,0&nomult


Poll

Let T : R2 → R2 be counterclockwise rotation by 45◦, and let A be the matrix
for T .

45◦
T

Find an eigenvector of A without doing any computations.

A. Okay. B. No way.

Poll

Answer: B. No way. There are no eigenvectors! [interactive]

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1/sqrt(2),-1/sqrt(2):1/sqrt(2),1/sqrt(2)&nomult


Section 5.2

The Characteristic Polynomial



The Characteristic Polynomial

Let A be a square matrix.

λ is an eigenvalue of A ⇐⇒ Ax = λx has a nontrivial solution

⇐⇒ (A− λI )x = 0 has a nontrivial solution

⇐⇒ A− λI is not invertible

⇐⇒ det(A− λI ) = 0.

This gives us a way to compute the eigenvalues of A.

Definition
Let A be a square matrix. The characteristic polynomial of A is

f (λ) = det(A− λI ).

The characteristic equation of A is the equation

f (λ) = det(A− λI ) = 0.

The eigenvalues of A are the roots of the characteristic
polynomial f (λ) = det(A− λI ).

Important



The Characteristic Polynomial
Example

Question: What are the eigenvalues of

A =

(
5 2
2 1

)
?

Answer: First we find the characteristic polynomial:

f (λ) = det(A− λI ) = det

[(
5 2
2 1

)
−
(
λ 0
0 λ

)]
= det

(
5− λ 2

2 1− λ

)
= (5− λ)(1− λ)− 2 · 2

= λ2 − 6λ+ 1.

The eigenvalues are the roots of the characteristic polynomial, which we can
find using the quadratic formula:

λ =
6±
√

36− 4

2
= 3± 2

√
2.



The Characteristic Polynomial
Example

Question: What is the characteristic polynomial of

A =

(
a b
c d

)
?

Answer:

f (λ) = det(A− λI ) = det

(
a− λ b
c d − λ

)
= (a− λ)(d − λ)− bc

= λ2 − (a + d)λ+ (ad − bc)

What do you notice about f (λ)?
I The constant term is det(A), which is zero if and only if λ = 0 is a root.
I The linear term −(a + d) is the negative of the sum of the diagonal

entries of A.

Definition
The trace of a square matrix A is Tr(A) = sum of the diagonal entries of A.

The characteristic polynomial of a 2× 2 matrix A is

f (λ) = λ2 − Tr(A)λ+ det(A).

Shortcut



The Characteristic Polynomial
Example

Question: What are the eigenvalues of the rabbit population matrix

A =

 0 6 8
1
2

0 0
0 1

2
0

?

Answer: First we find the characteristic polynomial:

f (λ) = det(A− λI ) = det

−λ 6 8
1
2
−λ 0

0 1
2
−λ


= 8

(
1

4
− 0 · −λ

)
− λ

(
λ2 − 6 · 1

2

)
= −λ3 + 3λ+ 2.

We know from before that one eigenvalue is λ = 2: indeed,
f (2) = −8 + 6 + 2 = 0. Doing polynomial long division, we get:

−λ3 + 3λ+ 2

λ− 2
= −λ2 − 2λ− 1 = −(λ+ 1)2.

Hence λ = −1 is also an eigenvalue.



Factoring the Characteristic Polynomial

It’s easy to factor quadraic polynomials:

x2 + bx + c = 0 =⇒ x =
−b ±

√
b2 − 4c

2
.

It’s less easy to factor cubics, quartics, and so on:

x3 + bx2 + cx + d = 0 =⇒ x = ???

x4 + bx3 + cx2 + dx + e = 0 =⇒ x = ???

Read about factoring polynomials by hand in §5.2.



Summary

We did two different things today.

First we talked about the geometry of eigenvalues and eigenvectors:

I Eigenvectors are vectors v such that v and Av are on the same line
through the origin.

I You can pick out the eigenvectors geometrically if you have a picture of
the associated transformation.

Then we talked about characteristic polynomials:

I We learned to find the eigenvalues of a matrix by computing the roots of
the characteristic polynomial p(λ) = det

(
A− λI

)
.

I For a 2× 2 matrix A, the characteristic polynomial is just

p(λ) = λ2 − Tr(A)λ+ det(A).



Section 5.4

Diagonalization



Motivation
Difference equations

Many real-word linear algebra problems have the form:

v1 = Av0, v2 = Av1 = A2v0, v3 = Av2 = A3v0, . . . vn = Avn−1 = Anv0.

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to vn as n→∞?

I Taking powers of diagonal matrices is easy!

I Taking powers of diagonalizable matrices is still easy!

I Diagonalizing a matrix is an eigenvalue problem.



Powers of Diagonal Matrices

If D is diagonal, then Dn is also diagonal; its diagonal entries are the nth
powers of the diagonal entries of D:

D =

(
2 0
0 −1

)
, D2 =

(
4 0
0 1

)
, D3 =

(
8 0
0 −1

)
, . . . Dn =

(
2n 0
0 (−1)n

)
.

D =

−1 0 0
0 1

2
0

0 0 1
3

 , D2 =

 1 0 0
0 1

4
0

0 0 1
9

 , D3 =

−1 0 0
0 1

8
0

0 0 1
27

 ,

. . . Dn =

 (−1)n 0 0
0 1

2n
0

0 0 1
3n





Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example

Let A =

(
1/2 3/2
3/2 1/2

)
. Compute An, using

A = CDC−1 for C =

(
1 1
1 −1

)
and D =

(
2 0
0 −1

)
.

We compute:

A2 = (CDC−1)(CDC−1) = CD(C−1C)DC−1 = CDIDC−1 = CD2C−1

A3 = (CDC−1)(CD2C−1) = CD(C−1C)D2C−1 = CDID2C−1 = CD3C−1

...

An = CDnC−1

Therefore

An =

(
1 1
1 −1

)(
2n 0
0 (−1)n

)
1

−2

(
−1 −1
−1 1

)
=

1

2

(
2n + (−1)n 2n + (−1)n+1

2n + (−1)n+1 2n + (−1)n

)
.

Closed formula in terms of n:
easy to compute



Similar Matrices

Definition
Two n× n matrices are similar if there exists an invertible n× n matrix C such
that A = CBC−1.

Fact: if two matrices are similar then so are their powers:

A = CBC−1 =⇒ An = CBnC−1.

Fact: if A is similar to B and B is similar to D, then A is similar to D.

A = CBC−1, B = EDE−1 =⇒ A = C(EDE−1)C−1 = (CE)D(CE)−1.



Diagonalizable Matrices

Definition
An n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = CDC−1 for D diagonal.

If A = CDC−1 for D =


d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

 then

Ak = CDKC−1 = C


dk

11 0 · · · 0
0 dk

22 · · · 0
...

...
. . .

...
0 0 · · · dk

nn

C−1.

Important

So diagonalizable matrices are easy to raise to any power.



Diagonalization

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In this case, A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).

Corollary

An n × n matrix with n distinct eigenvalues is diagonalizable.

a theorem that follows easily from another theorem

The Corollary is true because eigenvectors with distinct eigenvalues are always
linearly independent. We will see later that a diagonalizable matrix need not
have n distinct eigenvalues though.



Diagonalization

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In this case, A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).

Note that the decomposition is not unique: you can reorder the eigenvalues
and eigenvectors.

A =

 | |
v1 v2

| |

(λ1 0
0 λ2

) | |
v1 v2

| |

−1

=

 | |
v2 v1

| |

(λ2 0
0 λ1

) | |
v2 v1

| |

−1



Diagonalization
Easy example

Question: What does the Diagonalization Theorem say about the matrix

A =

 1 0 0
0 2 0
0 0 3

?

This is a triangular matrix, so the eigenvalues are the diagonal entries 1, 2, 3.

A diagonal matrix just scales the coordinates by the diagonal entries, so we can
take our eigenvectors to be the unit coordinate vectors e1, e2, e3. Hence the
Diagonalization Theorem says 1 0 0

0 2 0
0 0 3

 =

 1 0 0
0 1 0
0 0 1

 1 0 0
0 2 0
0 0 3

 1 0 0
0 1 0
0 0 1

 .

It doesn’t give us anything new because the matrix was already diagonal!

A diagonal matrix D is diagonalizable! It is similar to itself:

D = InDI
−1
n .



Diagonalization
Example

Problem: Diagonalize A =

(
1/2 3/2
3/2 1/2

)
.

The characteristic polynomial is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − λ− 2 = (λ+ 1)(λ− 2).

Therefore the eigenvalues are −1 and 2. Let’s compute some eigenvectors:

(A + 1I )x = 0 ⇐⇒
(

3/2 3/2
3/2 3/2

)
x = 0

rref
(

1 1
0 0

)
x = 0

The parametric form is x = −y , so v1 =
(−1

1

)
is an eigenvector with eigenvalue −1.

(A− 2I )x = 0 ⇐⇒
(
−3/2 3/2
3/2 −3/2

)
x = 0

rref
(

1 −1
0 0

)
x = 0

The parametric form is x = y , so v2 =
(

1
1

)
is an eigenvector with eigenvalue 2.

The eigenvectors v1, v2 are linearly independent, so the Diagonalization
Theorem says

A = CDC−1 for C =

(
−1 1
1 1

)
D =

(
−1 0
0 2

)
.



Diagonalization
Another example

Problem: Diagonalize A =

 4 −3 0
2 −1 0
1 −1 1

.

The characteristic polynomial is

f (λ) = det(A− λI ) = −λ3 + 4λ2 − 5λ+ 2 = −(λ− 1)2(λ− 2).

Therefore the eigenvalues are 1 and 2, with respective multiplicities 2 and 1.
Let’s compute the 1-eigenspace:

(A− I )x = 0 ⇐⇒

 3 −3 0
2 −2 0
1 −1 0

 x = 0
rref

 1 −1 0
0 0 0
0 0 0

 x = 0

The parametric vector form is

x = y

y = y

z = z
=⇒

x
y
z

 = y

1
1
0

+ z

0
0
1


Hence a basis for the 1-eigenspace is

B1 =
{
v1, v2

}
where v1 =

1
1
0

 , v2 =

0
0
1

 .



Diagonalization
Another example, continued

Problem: Diagonalize A =

 4 −3 0
2 −1 0
1 −1 1

.

Now let’s compute the 2-eigenspace:

(A− 2I )x = 0 ⇐⇒

 2 −3 0
2 −3 0
1 −1 −1

 x = 0
rref

 1 0 −3
0 1 −2
0 0 0

 x = 0

The parametric form is x = 3z , y = 2z , so an eigenvector with eigenvalue 2 is

v3 =

3
2
1

 .

The eigenvectors v1, v2, v3 are linearly independent: v1, v2 form a basis for the
1-eigenspace, and v3 is not contained in the 1-eigenspace. Therefore the
Diagonalization Theorem says

A = CDC−1 for C =

 1 0 3
1 0 2
0 1 1

 D =

 1 0 0
0 1 0
0 0 2

 .

Note: In this case, there are three linearly independent eigenvectors, but only
two distinct eigenvalues.



Diagonalization
A non-diagonalizable matrix

Problem: Show that A =

(
1 1
0 1

)
is not diagonalizable.

This is an upper-triangular matrix, so the only eigenvalue is 1. Let’s compute
the 1-eigenspace:

(A− I )x = 0 ⇐⇒
(

0 1
0 0

)
x = 0.

This is row reduced, but has only one free variable x ; a basis for the
1-eigenspace is {

(
1
0

)
}. So all eigenvectors of A are multiples of

(
1
0

)
.

Conclusion: A has only one linearly independent eigenvector, so by the “only
if” part of the diagonalization theorem, A is not diagonalizable.



Poll

Which of the following matrices are diagonalizable, and why?

A.

(
1 2
0 1

)
B.

(
1 2
0 2

)
C.

(
2 1
0 2

)
D.

(
2 0
0 2

)
Poll

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is
spanned by

(
1
0

)
.

Similarly, matrix C is not diagonalizable.

Matrix B is diagonalizable because it is a 2× 2 matrix with distinct eigenvalues.

Matrix D is already diagonal!



Diagonalization
Procedure

How to diagonalize a matrix A:

1. Find the eigenvalues of A using the characteristic polynomial.

2. For each eigenvalue λ of A, compute a basis Bλ for the λ-eigenspace.

3. If there are fewer than n total vectors in the union of all of the eigenspace
bases Bλ, then the matrix is not diagonalizable.

4. Otherwise, the n vectors v1, v2, . . . , vn in your eigenspace bases are linearly
independent, and A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 and D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where λi is the eigenvalue for vi .



Diagonalization
Proof

Why is the Diagonalization Theorem true?

A diagonalizable implies A has n linearly independent eigenvectors: Suppose
A = CDC−1, where D is diagonal with diagonal entries λ1, λ2, . . . , λn. Let
v1, v2, . . . , vn be the columns of C . They are linearly independent because C is
invertible. So Cei = vi , hence C−1vi = ei .

Avi = CDC−1vi = CDei = C(λiei ) = λiCei = λivi .

Hence vi is an eigenvector of A with eigenvalue λi . So the columns of C form
n linearly independent eigenvectors of A, and the diagonal entries of D are the
eigenvalues.

A has n linearly independent eigenvectors implies A is diagonalizable: Suppose
A has n linearly independent eigenvectors v1, v2, . . . , vn, with eigenvalues
λ1, λ2, . . . , λn. Let C be the invertible matrix with columns v1, v2, . . . , vn. Let
D = C−1AC .

Dei = C−1ACei = C−1Avi = C−1(λivi ) = λiC
−1vi = λiei .

Hence D is diagonal, with diagonal entries λ1, λ2, . . . , λn. Solving D = C−1AC
for A gives A = CDC−1.



Algebraic Multiplicity

Definition
The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of
the characteristic polynomial.

This is not a very interesting notion yet. It will become interesting when we
also define geometric multiplicity later.

Example

In the rabbit population matrix, f (λ) = −(λ− 2)(λ+ 1)2, so the algebraic
multiplicity of the eigenvalue 2 is 1, and the algebraic multiplicity of the
eigenvalue −1 is 2.

Example

In the matrix

(
5 2
2 1

)
, f (λ) = (λ− (3− 2

√
2))(λ− (3 + 2

√
2)), so the

algebraic multiplicity of 3 + 2
√

2 is 1, and the algebraic multiplicity of 3− 2
√

2
is 1.



Non-Distinct Eigenvalues

Definition
Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ
is the dimension of the λ-eigenspace.

Theorem
Let λ be an eigenvalue of a square matrix A. Then

1 ≤ (the geometric multiplicity of λ) ≤ (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is
1, then the geometric multiplicity is also 1: the eigenspace is a line.

The Diagonalization Theorem (Alternate Form)

Let A be an n × n matrix. The following are equivalent:

1. A is diagonalizable.

2. The sum of the geometric multiplicities of the eigenvalues of A equals n.

3. The sum of the algebraic multiplicities of the eigenvalues of A equals n,
and for each eigenvalue, the geometric multiplicity equals the algebraic
multiplicity.



Non-Distinct Eigenvalues
Examples

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1,
hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example, A =

(
1/2 3/2
3/2 1/2

)
has eigenvalues −1 and 2, so it is diagonalizable.

Example

The matrix A =

 4 −3 0
2 −1 0
1 −1 1

 has characteristic polynomial

f (λ) = −(λ− 1)2(λ− 2).

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3.

We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace
has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1.

Hence the geometric multiplicities add up to 3, so A is diagonalizable.



Non-Distinct Eigenvalues
Another example

Example

The matrix A =

(
1 1
0 1

)
has characteristic polynomial f (λ) = (λ− 1)2.

It has one eigenvalue 1 of algebraic multiplicity 2.

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace
has dimension 1).

Since the geometric multiplicity is smaller than the algebraic multiplicity, the
matrix is not diagonalizable.



Summary

I A matrix A is diagonalizable if it is similar to a diagonal matrix D:
A = CDC−1.

I It is easy to take powers of diagonalizable matrices: Ar = CD rC−1.

I An n × n matrix is diagonalizable if and only if it has n linearly
independent eigenvectors v1, v2, . . . , vn, in which case A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

I If A has n distinct eigenvalues, then it is diagonalizable.

I The geometric multiplicity of an eigenvalue λ is the dimension of the
λ-eigenspace.

I 1 ≤ (geometric multiplicity) ≤ (algebraic multiplicity).

I An n × n matrix is diagonalizable if and only if the sum of the geometric
multiplicities is n.



Diagonalizable Matrices
Review

Recall: an n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = CDC−1 for D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

It is easy to take powers of diagonalizable matrices:

Ai = CD iC−1 = C


λi

1 0 · · · 0
0 λi

2 · · · 0
...

...
. . .

...
0 0 · · · λi

n

C−1.

We begin today by discussing the geometry of diagonalizable matrices.



Geometry of Diagonal Matrices

A diagonal matrix D =
(

2 0
0 −1

)
just scales the coordinate axes:(

2 0
0 −1

)(
1
0

)
= 2

(
1
0

) (
2 0
0 −1

)(
0
1

)
= −1

(
0
1

)
.

This is easy to visualize:

v1

v2x

Dv1

Dv2Dx

D

x =

(
−1
1

)
=⇒ Dx =

(
−2
−1

)
.



Geometry of Diagonalizable Matrices

We had this example last time: A = CDC−1 for

A =

(
1/2 3/2
3/2 1/2

)
D =

(
2 0
0 −1

)
C =

(
1 1
1 −1

)
The eigenvectors of A are v1 =

(
1
1

)
and v2 =

(
1
−1

)
with eigenvalues 2 and −1.

The eigenvectors form a basis for R2 because they’re linearly independent.

Any vector can be written as a linear combination of basis vectors:

x = a1v1 + a2v2 =⇒ Ax = A(a1v1 + a2v2) = a1Av1 + a2Av2 = 2a1v1 − a2v2.

Conclusion: A scales the “v1-direction” by 2 and the “v2-direction” by −1.

v1

v2

Av1
Av2

[interactive]

A

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1/2,3/2:3/2,1/2&nomult


Geometry of Diagonalizable Matrices
Continued

Example: x =
(

0
−2

)
= − 1v1 + 1v2

Ax = −1Av1 + 1Av2 = − 2v1 + − 1v2 = −2

(
1
1

)
−
(

1
−1

)
=

(
−3
−1

)
.

v1

v2

x

Av1Av2

Ax

A

Example: y = 1
2

(
5
−3

)
= 1

2
v1 + 2v2

Ay =
1

2
Av1 + 2Av2 = 1v1 + − 2v2 =

(
1
1

)
− 2

(
1
−1

)
=

(
−1
3

)
.

v1

v2 y

Av1
Av2

AyA



Dynamics of Diagonalizable Matrices

We motivated diagonalization by taking powers:

Ai = CD iC−1 = C


λi

1 0 · · · 0
0 λi

2 · · · 0
...

...
. . .

...
0 0 · · · λi

n

C−1.

This lets us compute powers of matrices easily. How to visualize this?

Anv = A(A(A · · · (Av)) · · · )

Multiplying a vector v by An means repeatedly multiplying by A.



Dynamics of Diagonalizable Matrices
Example

A =
1

10

(
11 6
9 14

)
= CDC−1 for C =

(
2/3 1
−1 1

)
D =

(
2 0
0 1/2

)
.

Eigenvectors of A are v1 =
(

2/3
−1

)
and v2 =

(
1
1

)
with eigenvalues 2 and 1/2.

A(a1v1 + a2v2) = 2a1v1 +
1

2
a2v2

A2(a1v1 + a2v2) = 4a1v1 +
1

4
a2v2

A3(a1v1 + a2v2) = 8a1v1 +
1

8
a2v2

...

An(a1v1 + a2v2) = 2na1v1 +
1

2n
a2v2

What does repeated application of A do geometrically?

It makes the “v1-coordinate” very big, and the “v2-coordinate” very small.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=2,0:0,1/2&v1=2/3,-1,0&v2=1,1,0


Dynamics of Diagonalizable Matrices
Another Example

A =
1

6

(
5 −1
−2 4

)
= CDC−1 for C =

(
−1 1/2
1 1

)
D =

(
1 0
0 1/2

)
.

Eigenvectors of A are v1 =
(−1

1

)
and v2 =

(
1/2

1

)
with eigenvalues 1 and 1/2.

A(a1v1 + a2v2) = a1v1 +
1

2
a2v2

A2(a1v1 + a2v2) = a1v1 +
1

4
a2v2

A3(a1v1 + a2v2) = a1v1 +
1

8
a2v2

...

An(a1v1 + a2v2) = a1v1 +
1

2n
a2v2

What does repeated application of A do geometrically?

It “sucks everything into the 1-eigenspace.”

[interactive]

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=1,0:0,1/2&v1=-1,1,0&v2=1/2,1,0


Dynamics of Diagonalizable Matrices
Poll

A =
1

30

(
12 2
3 13

)
= CDC−1 for C =

(
2/3 −1

1 1

)
D =

(
1/2 0

0 1/3

)
.

What does repeated application of A do geometrically?
A. Sucks all vectors into a line.

B. Sucks all vectors into the origin.

C. Shoots all vectors away from a line.

D. Shoots all vectors away from the origin.

Poll

B. Since both eigenvalues are less than 1, the matrix A scales both directions
towards the origin.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=1/2,0:0,1/3&v1=2/3,1,0&v2=-1,1,0


Section 5.5

Complex Eigenvalues



A Matrix with No Eigenvectors

Consider the matrix for the linear transformation for rotation by π/4 in the
plane. The matrix is:

A =
1√
2

(
1 −1
1 1

)
.

This matrix has no eigenvectors, as you can see geometrically: [interactive]

A

no nonzero vector x
is collinear with Ax

or algebraically:

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 −
√

2λ+ 1 =⇒ λ =

√
2±
√
−2

2
.

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)


Complex Numbers

It makes us sad that −1 has no square root. If it did, then
√
−2 =

√
2 ·
√
−1.

Mathematician’s solution: we’re just not using enough numbers! We’re going
to declare by fiat that there exists a square root of −1.

Definition
The number i is defined such that i2 = −1.

Once we have i , we have to allow numbers like a + bi for real numbers a, b.

Definition
A complex number is a number of the form a + bi for a, b in R. The set of all
complex numbers is denoted C.

Note R is contained in C: they’re the numbers a + 0i .

We can identify C with R2 by a + bi ←→
(
a
b

)
. So when we draw a picture of C,

we draw the plane:

real axis

imaginary axis

1
i

1− i



Operations on Complex Numbers

Addition: (2− 3i) + (−1 + i) = 1− 2i .

Multiplication: (2−3i)(−1 + i) = 2(−1) + 2i + 3i −3i2 = −2 + 5i + 3 = 1 + 5i .

Complex conjugation: a + bi = a− bi is the complex conjugate of a + bi .
Check: z + w = z + w and zw = z · w .

Absolute value: |a + bi | =
√
a2 + b2. This is a real number.

Note: (a+bi)(a + bi) = (a+bi)(a−bi) = a2− (bi)2 = a2 +b2. So |z | =
√
zz .

Check: |zw | = |z | · |w |.

Division by a nonzero real number:
a + bi

c
=

a

c
+

b

c
i .

Division by a nonzero complex number:
z

w
=

zw

ww
=

zw

|w |2 .

Example:
1 + i

1− i
=

(1 + i)2

12 + (−1)2
=

1 + 2i + i2

2
= i .

Real and imaginary part: Re(a + bi) = a Im(a + bi) = b.



The Fundamental Theorem of Algebra

The whole point of using complex numbers is to solve polynomial equations. It
turns out that they are enough to find all solutions of all polynomial equations:

Fundamental Theorem of Algebra

Every polynomial of degree n has exactly n complex roots, counted with
multiplicity.

Equivalently, if f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 is a polynomial of degree

n, then
f (x) = (x − λ1)(x − λ2) · · · (x − λn)

for (not necessarily distinct) complex numbers λ1, λ2, . . . , λn.

If f is a polynomial with real coefficients, and if λ is a complex root of
f , then so is λ:

0 = f (λ) = λn + an−1λn−1 + · · ·+ a1λ+ a0

= λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = f

(
λ
)
.

Therefore complex roots of real polynomials come in conjugate pairs.

Important



The Fundamental Theorem of Algebra
Examples

Degree 2: The quadratic formula gives you the (real or complex) roots of any
degree-2 polynomial:

f (x) = x2 + bx + c =⇒ x =
−b ±

√
b2 − 4c

2
.

For instance, if f (λ) = λ2 −
√

2λ+ 1 then

λ =

√
2±
√
−2

2
=

√
2

2
(1± i) =

1± i√
2
.

Note the roots are complex conjugates if b, c are real.



The Fundamental Theorem of Algebra
Examples

Degree 3: A real cubic polynomial has either three real roots, or one real root
and a conjugate pair of complex roots. The graph looks like:

or

respectively.



A Matrix with an Eigenvector

Every matrix is guaranteed to have complex eigenvalues and eigenvectors.
Using rotation by π/4 from before:

A =
1√
2

(
1 −1
1 1

)
has eigenvalues λ =

1± i√
2
.

Let’s compute an eigenvector for λ = (1 + i)/
√

2:

A− λI =
1√
2

(
1− (1 + i) −1

1 1− (1 + i)

)
=

1√
2

(
−i −1
1 −i

)
.

The second row is i times the first, so we row reduce:

1√
2

(
−i −1
1 −i

)
1√
2

(
−i −1
0 0

) divide by −i/
√

2 (
1 −i
0 0

)
.

The parametric form is x = iy , so an eigenvector is

(
i
1

)
. So is any nonzero

complex scalar multiple of

(
i
1

)
, for example (−i/

√
2)

(
i
1

)
=

(
1√
2

− i√
2

)
.

A similar computation shows that an eigenvector for λ = (1− i)/
√

2 is

(
−i
1

)
.

So is i

(
−i
1

)
=

(
1
i

)
(you can scale by complex numbers).



Conjugate Eigenvectors

For A =
1√
2

(
1 −1
1 1

)
,

the eigenvalue
1 + i√

2
has eigenvector

(
i
1

)
.

the eigenvalue
1− i√

2
has eigenvector

(
−i
1

)
.

Do you notice a pattern?

Fact
Let A be a real square matrix. If λ is a complex eigenvalue with eigenvector v ,
then λ is an eigenvalue with eigenvector v .

Why?
Av = λ =⇒ Av = Av = λv = λv .

Both eigenvalues and eigenvectors of real square
matrices occur in conjugate pairs.



2 × 2 eigenvector trick

Suppose A is a 2× 2 matrix and λ is any eigenvalue of A. Then

A− λI2 =

(
z w

(∗) (∗)

)
=⇒

(
−w
z

)
is an eigenvector of A corresponding to the eigenvalue λ.

In the previous example, λ =
1 + i√

2
was an eigenvalue of A =

1√
2

(
1 −1
1 1

)
and

A− λI =

(
− i√

2
− 1√

2
1√
2
− i√

2

)
=

(
z w

(∗) (∗)

)
.

So an eigenvector of A corresponding to λ is

v =

(
−w
z

)
=

 1√
2

− i√
2

 .

This was much faster than doing the full 2× 2 row reduction in the previous
example, and it agrees with our answer.



A 3 × 3 Example

Find the eigenvalues and eigenvectors of

A =

 4
5
− 3

5
0

3
5

4
5

0
0 0 2

 .

The characteristic polynomial is

f (λ) = det

 4
5
− λ − 3

5
0

3
5

4
5
− λ 0

0 0 2− λ

 = (2− λ)

(
λ2 − 8

5
λ+ 1

)
.

This factors out
automatically if you

expand cofactors along
the third row or column

We computed the roots of this polynomial (times 5) before:

λ = 2,
4 + 3i

5
,

4− 3i

5
.

We eyeball an eigenvector with eigenvalue 2 as (0, 0, 1).



A 3 × 3 Example
Continued

A =

 4
5
− 3

5
0

3
5

4
5

0
0 0 2


To find the other eigenvectors, we row reduce:

A− 4 + 3i

5
I =

− 3
5
i − 3

5
0

3
5

− 3
5
i 0

0 0 2− 4+3i
5

 scale rows

−i −1 0
1 −i 0
0 0 1


The second row is i times the first:

row replacement
−i −1 0

0 0 0
0 0 1

 divide by −i ,swap
 1 −i 0

0 0 1
0 0 0

 .

The parametric form is x = iy , z = 0, so an eigenvector is

 i
1
0

. Therefore, an

eigenvector with conjugate eigenvalue
4− 3i

5
is

−i1
0

.



Summary

I Diagonal matrices are easy to understand geometrically.

I Diagonalizable matrices behave like diagonal matrices, except with respect
to a basis of eigenvectors.

I Repeatedly multiplying by a matrix leads to fun pictures.

I One can do arithmetic with complex numbers just like real numbers: add,
subtract, multiply, divide.

I An n × n matrix always exactly has complex n eigenvalues, counted with
(algebraic) multiplicity.

I The complex eigenvalues and eigenvectors of a real matrix come in
complex conjugate pairs:

Av = λv =⇒ Av = λv .



Section 5.6

Stochastic Matrices and PageRank



Stochastic Matrices

Definition
A square matrix A is stochastic if all of its entries are nonnegative, and the
sum of the entries of each column is 1.

We say A is positive if all of its entries are positive.

These arise very commonly in modeling of probabalistic phenomena (Markov
chains).

You’ll be responsible for knowing basic facts about
stochastic matrices, the Perron–Frobenius theorem, and
PageRank, but we will not cover them in depth.



Stochastic Matrices
Example

Red Box has kiosks all over where you can rent movies. You can return them
to any other kiosk. Let A be the matrix whose ij entry is the probability that a
customer renting a movie from location j returns it to location i . For example,
if there are three locations, maybe

A =

 .3 .4 .5
.3 .4 .3
.4 .2 .2

 .

30% probability a movie rented
from location 3 gets returned
to location 2

The columns sum to 1 because there is a 100% chance that the movie will get
returned to some location. This is a positive stochastic matrix.

Note that, if v = (x , y , z) represents the number of movies at the three
locations, then (assuming the number of movies is large), Red Box will have
approximately

Av = A

x
y
z

 =

.3x + .4y + .5z
.3x + .4y + .3z
.4x + .2y + .2z


movies in its three locations the next day.

“The number of movies returned to location 2
will be (on average):

30% of the movies from location 1;
40% of the movies from location 2;
30% of the movies from location 3”

The total number of movies doesn’t
change because the columns sum to 1.



Stochastic Matrices and Difference Equations

If xn, yn, zn are the numbers of movies in locations 1, 2, 3, respectively, on day
n, and vn = (xn, yn, zn), then:

vn = Avn−1 = A2vn−2 = · · · = Anv0.

Recall: This is an example of a difference equation.

Red Box probably cares about what vn is as n gets large: it tells them where
the movies will end up eventually. This seems to involve computing An for
large n, but as we will see, they actually only have to compute one eigenvector.

In general: A difference equation vn+1 = Avn is used to model a state change
controlled by a matrix:

I vn is the “state at time n”,

I vn+1 is the “state at time n + 1”, and

I vn+1 = Avn means that A is the “change of state matrix.”



Eigenvalues of Stochastic Matrices

Fact: 1 is an eigenvalue of a stochastic matrix.

Why? If A is stochastic, then 1 is an eigenvalue of AT : .3 .3 .4
.4 .4 .2
.5 .3 .2

 1
1
1

 = 1 ·

1
1
1

 .

Lemma
A and AT have the same eigenvalues.

Proof: det(A− λI ) = det
(
(A− λI )T

)
= det(AT − λI ), so they have the same

characteristic polynomial.

Note: This doesn’t give a new procedure for finding an eigenvector with
eigenvalue 1; it only shows one exists.



Eigenvalues of Stochastic Matrices
Continued

Fact: if λ is an eigenvalue of a stochastic matrix, then |λ| ≤ 1. Hence 1 is the
largest eigenvalue (in absolute value).

Why? If λ is an eigenvalue of A then it is an eigenvalue of AT .

eigenvector v =


x1

x2

...
xn

 λv = AT v =⇒ λxj =
∑n

i=1 aijxi .

jth entry of AT v

Choose xj with the largest absolute value, so |xi | ≤ |xj | for all i .

|λ| · |xj | =

∣∣∣∣∣
n∑

i=1

aijxi

∣∣∣∣∣ ≤
n∑

i=1

aij · |xi | ≤
n∑

i=1

aij · |xj | = 1 · |xj |,

so |λ| ≤ 1.

positive

≥ |xi |

=
∑

i aij

Better fact: if λ 6= 1 is an eigenvalue of a positive stochastic matrix, then
|λ| < 1.



Diagonalizable Stochastic Matrices
Example from §5.3

Let A =

(
3/4 1/4
1/4 3/4

)
. This is a positive stochastic matrix.

This matrix is diagonalizable:

A = CDC−1 for C =

(
1 1
1 −1

)
D =

(
1 0
0 1/2

)
.

Let w1 =
(

1
1

)
and w2 =

(
1
−1

)
be the columns of C .

A(a1w1 + a2w2) = a1w1 +
1

2
a2w2

A2(a1w1 + a2w2) = a1w1 +
1

4
a2w2

A3(a1w1 + a2w2) = a1w1 +
1

8
a2w2

...

An(a1w1 + a2w2) = a1w1 +
1

2n
a2w2

When n is large, the second term disappears, so Anx approaches a1w1, which is
an eigenvector with eigenvalue 1 (assuming a1 6= 0). So all vectors get “sucked
into the 1-eigenspace,” which is spanned by w1 =

(
1
1

)
.



Diagonalizable Stochastic Matrices
Example, continued

[interactive]

1-eigenspace1/2-eigenspace

w1

w2

v0

v1

v2

v3

v4

All vectors get “sucked into the 1-eigenspace.”

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=1,0:0,1/2&v1=1,1,0&v2=1,-1,0


Diagonalizable Stochastic Matrices

The Red Box matrix A =

 .3 .4 .5
.3 .4 .3
.4 .2 .2

 has characteristic polynomial

f (λ) = −λ3 + 0.12λ− 0.02 = −(λ− 1)(λ+ 0.2)(λ− 0.1).

So 1 is indeed the largest eigenvalue. Since A has 3 distinct eigenvalues, it is
diagonalizable:

A = C

 1 0 0
0 .1 0
0 0 −.2

C−1 = CDC−1.

Hence it is easy to compute the powers of A:

An = C

 1 0 0
0 (.1)n 0
0 0 (−.2)n

C−1 = CDnC−1.

Let w1,w2,w3 be the columns of C , i.e. the eigenvectors of C with respective
eigenvalues 1, .1,−.2.



Diagonalizable Stochastic Matrices
Continued

Let a1w1 + a2w2 + a3w3 be any vector in R3.

A(a1w1 + a2w2 + a3w3) = a1w1 + (.1)a2w2 + (−.2)a3w3

A2(a1w1 + a2w2 + a3w3) = a1w1 + (.1)2a2w2 + (−.2)2a3w3

A3(a1w1 + a2w2 + a3w3) = a1w1 + (.1)3a2w2 + (−.2)3a3w3

...

An(a1w1 + a2w2 + a3w3) = a1w1 + (.1)na2w2 + (−.2)na3w3

As n becomes large, this approaches a1w1, which is an eigenvector with
eigenvalue 1 (assuming a1 6= 0). So all vectors get “sucked into the
1-eigenspace,” which (I computed) is spanned by

w = w1 =
1

18

7
6
5

 .

(We’ll see in a moment why I chose that eigenvector.)



Diagonalizable Stochastic Matrices
Picture

Start with a vector v0 (the number of movies on the first day), let v1 = Av0

(the number of movies on the second day), let v2 = Av1, etc.

1-eigenspace

w
v0

v1

v2

v3

v4

We see that vn approaches an eigenvector with eigenvalue 1 as n gets large: all
vectors get “sucked into the 1-eigenspace.” [interactive]

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=1,0:0,-1/5&v1=7/4,6/4,5/4&v2=-1/4,0,1/4&v3=1/4,-3/4,2/4&vec=false&path=false&eigenz=1/10


Diagonalizable Stochastic Matrices
Interpretation

If A is the Red Box matrix, and vn is the vector representing the number of
movies in the three locations on day n, then

vn+1 = Avn.

For any starting distribution v0 of videos in red boxes, after enough days, the
distribution v (= vn for n large) is an eigenvector with eigenvalue 1:

Av = v .

In other words, eventually each kiosk has the same number of movies, every
day.

Moreover, we know exactly what v is: it is the multiple of
w ∼ (0.39, 0.33, 0.28) that represents the same number of videos as in v0.
(Remember the total number of videos never changes.)

Presumably, Red Box really does have to do this kind of analysis to determine
how many videos to put in each box.



Perron–Frobenius Theorem

Definition
A steady state for a stochastic matrix A is an eigenvector w with eigenvalue 1,
such that all entries are positive and sum to 1.

Perron–Frobenius Theorem
If A is a positive stochastic matrix, then it admits a unique steady state vector
w , which spans the 1-eigenspace.

Moreover, for any vector v0 with entries summing to some number c, the
iterates v1 = Av0, v2 = Av1, . . . , vn = Avn−1, . . . , approach cw as n gets large.

Translation: The Perron–Frobenius Theorem says the following:

I The 1-eigenspace of a positive stochastic matrix A is a line.

I To compute the steady state, find any 1-eigenvector (as usual), then
divide by the sum of the entries; the resulting vector w has entries that
sum to 1, and are automatically positive.

I Think of w as a vector of steady state percentages: if the movies are
distributed according to these percentages today, then they’ll be in the
same distribution tomorrow.

I The sum c of the entries of v0 is the total number of movies; eventually,
the movies arrange themselves according to the steady state percentage,
i.e., vn → cw .



Steady State
Red Box example

Consider the Red Box matrix A =

 .3 .4 .5
.3 .4 .3
.4 .2 .2

.

I computed Nul(A− I ) and found that

w ′ =

7
6
5


is an eigenvector with eigenvalue 1.

To get a steady state, I divided by 18 = 7 + 6 + 5 to get

w =
1

18

7
6
5

 ∼ (0.39, 0.33, 0.28).

This says that eventually, 39% of the movies will be in location 1, 33% will be
in location 2, and 28% will be in location 3, every day.

So if you start with 100 total movies, eventually you’ll have
100w = (39, 33, 28) movies in the three locations, every day.

The Perron–Frobenius Theorem says that our analysis of the Red Box matrix
works for any positive stochastic matrix—whether or not it is diagonalizable!



Google’s PageRank

Internet searching in the 90’s was a pain. Yahoo or AltaVista would scan pages
for your search text, and just list the results with the most occurrences of those
words.

Not surprisingly, the more unsavory websites soon learned that by putting the
words “Alanis Morissette” a million times in their pages, they could show up
first every time an angsty teenager tried to find Jagged Little Pill on Napster.

Larry Page and Sergey Brin invented a way to rank pages by importance. They
founded Google based on their algorithm.

Here’s how it works. (roughly)

Reference:

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html


The Importance Rule

Each webpage has an associated importance, or rank. This is a positive
number.

If page P links to n other pages Q1,Q2, . . . ,Qn, then
each Qi should inherit 1

n
of P’s importance.

The Importance Rule

I So if a very important page links to your webpage, your webpage is
considered important.

I And if a ton of unimportant pages link to your webpage, then it’s still
important.

I But if only one crappy site links to yours, your page isn’t important.

Random surfer interpretation: a “random surfer” just sits at his computer all
day, randomly clicking on links. The pages he spends the most time on should
be the most important. This turns out to be equivalent to the rank.



The Importance Matrix

Consider the following Internet with only four pages. Links are indicated by
arrows.

A B

C D

1
3

1
3

1
3

1
2

1
21 1

2

1
2

Page A has 3 links, so it passes 1
3

of its importance to pages B,C ,D.

Page B has 2 links, so it passes 1
2

of its importance to pages C ,D.

Page C has one link, so it passes all of its importance to page A.

Page D has 2 links, so it passes 1
2

of its importance to pages A,C .

In terms of matrices, if v = (a, b, c, d) is the vector containing the ranks
a, b, c, d of the pages A,B,C ,D, then

0 0 1 1
2

1
3

0 0 0
1
3

1
2

0 1
2

1
3

1
2

0 0



a
b
c
d

 =


c + 1

2
d

1
3
a

1
3
a + 1

2
b + 1

2
d

1
3
a + 1

2
b

=


a
b
c
d


Importance Rule

importance
matrix: ij entry is
importance page j
passes to page i



The 25 Billion Dollar Eigenvector

Observations:

I The importance matrix is a stochastic matrix! The columns each contain
1/n (n = number of links), n times.

I The rank vector is an eigenvector with eigenvalue 1!

Random surfer interpretation: If a random surfer has probability (a, b, c, d) to
be on page A,B,C ,D, respectively, then after clicking on a random link, the
probability he’ll be on each page is

0 0 1 1
2

1
3

0 0 0
1
3

1
2

0 1
2

1
3

1
2

0 0



a
b
c
d

 =


c + 1

2
d

1
3
a

1
3
a + 1

2
b + 1

2
d

1
3
a + 1

2
b

 .

The rank vector is a steady state for the importance matrix: it’s the probability
vector (a, b, c, d) such that, after clicking on a random link, the random surfer
will have the same probability of being on each page.

So, the important (high-ranked) pages are those where a random surfer will
end up most often.



Problems with the Importance Matrix
Dangling pages

Observation: the importance matrix is not positive: it’s only nonnegative. So
we can’t apply the Perron–Frobenius theorem. Does this cause problems? Yes!

Consider the following Internet:

A

C

B

1

1

The importance matrix is

 0 0 0
0 0 0
1 1 0

. This has characteristic polynomial

f (λ) = det

−λ 0 0
0 −λ 0
1 1 −λ

 = −λ3.

So 1 is not an eigenvalue at all: there is no rank vector! (It is not stochastic.)



Problems with the Importance Matrix
Disconnected internet

Consider the following Internet:

D

A B C

E

1

1

1
2

1
2

1
2

1
2

1
2

1
2

The importance matrix is


0 1 0 0 0
1 0 0 0 0
0 0 0 1

2
1
2

0 0 1
2

0 1
2

0 0 1
2

1
2

0

 . This has linearly independent

eigenvectors


1
1
0
0
0

 and


0
0
1
1
1

, both with eigenvalue 1. So there is more than

one rank vector!



The Google Matrix

Here is Page and Brin’s solution. First we fix the importance matrix A as
follows: replace a column if zeros with a column of 1/Ns, where N is the
number of pages.

A =

 0 0 0
0 0 0
1 1 0

 A′ =

 0 0 1/3
0 0 1/3
1 1 1/3

 .

The modified importance matrix A′ is always stochastic.

Now fix p in (0, 1), called the damping factor. (A typical value is p = 0.15.)
The Google Matrix is

M = (1− p) · A′ + p · B where B =
1

N


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ,

N is the total number of pages.

In the random surfer interpretation, this matrix M says: with probability p, our
surfer will surf to a completely random page; otherwise, he’ll click a random
link. On a page with no links, he’ll always surf to a completely random page.



The Google Matrix
Upshot

Lemma
The Google matrix is a positive stochastic matrix.

The PageRank vector is the steady state for the Google Matrix.

This exists and has positive entries by the Perron–Frobenius theorem. The hard
part is calculating it: the Google matrix has 1 gazillion rows.



The Google Matrix
Example

Consider this Internet:

A B

C D

1
3

1
3

1
3

1
2

1
2

1
2

1
2

The importance and modified importance matrices are

A =


0 0 0 1

2
1
3

0 0 0
1
3

1
2

0 1
2

1
3

1
2

0 0

 modify
A′ =


0 0 1

4
1
2

1
3

0 1
4

0
1
3

1
2

1
4

1
2

1
3

1
2

1
4

0


If we choose the damping factor p = .15, then the Google matrix is

M = (1− p)A′ + pB =


0.0375 0.0375 0.2500 0.4625
0.3208 0.0375 0.2500 0.0375
0.3208 0.4625 0.2500 0.4625
0.3208 0.4625 0.2500 0.0375





The Google Matrix
Example, Continued

M =


0.0375 0.0375 0.2500 0.4625
0.3208 0.0375 0.2500 0.0375
0.3208 0.4625 0.2500 0.4625
0.3208 0.4625 0.2500 0.0375


Row reduce M − I to find the steady-state vector:

v =


0.2192
0.1752
0.3558
0.2498


This is the PageRank!

.22 .18

.35 .25

1
3

1
3

1
3

1
2

1
2

1
2

1
2



Summary

I Stochastic and positive stochastic matrices model probabilistic systems.

I We care about the long-term behavior of such a system. This is called the
steady state. It tells us the eventual state of the system.

I The Perron–Frobenius theorem says that a positive stochastic matrix
always has a unique steady state.

I If you can understand the RedBox example, then you understand almost
everything.

I The Google matrix is an example of a positive stochastic matrix.

I The steady state of the Google matrix is the PageRank.



Chapter 6

Orthogonality



Section 6.1

Dot Products and Orthogonality



Orientation

Recall: This course is about learning to:

I Solve the matrix equation Ax = b

I Solve the matrix equation Ax = λx

I Almost solve the equation Ax = b

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x
which you know for theoretical reasons must lie on a plane spanned by two
vectors u and v .

u

v

x

Due to measurement error, though, the measured x is not actually in
Span{u, v}. In other words, the equation au + bv = x has no solution. What
do you do? The real value is probably the closest point to x on Span{u, v}.
Which point is that?



The Dot Product

We need a notion of angle between two vectors, and in particular, a notion of
orthogonality (i.e. when two vectors are perpendicular). This is the purpose of
the dot product.

Definition
The dot product of two vectors x , y in Rn is

x · y =


x1

x2

...
xn

 ·

y1

y2

...
yn

 def
= x1y1 + x2y2 + · · ·+ xnyn.

Thinking of x , y as column vectors, this is the same as xT y .

Example1
2
3

 ·
4

5
6

 =
(

1 2 3
)4

5
6

 = 1 · 4 + 2 · 5 + 3 · 6 = 32.



Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot
two vectors together, and that the result is a scalar.

I x · y = y · x
I (x + y) · z = x · z + y · z
I (cx) · y = c(x · y)

Dotting a vector with itself is special:
x1

x2

...
xn

 ·

x1

x2

...
xn

 = x2
1 + x2

2 + · · ·+ x2
n .

Hence:

I x · x ≥ 0

I x · x = 0 if and only if x = 0.

Important: x · y = 0 does not imply x = 0 or y = 0. For example,
(

1
0

)
·
(

0
1

)
= 0.



The Dot Product and Length

Definition
The length or norm of a vector x in Rn is

‖x‖ =
√
x · x =

√
x2

1 + x2
2 + · · ·+ x2

n .

Why is this a good definition? The Pythagorean theorem!(
3
4

)
√ 3

2
+

4
2
=

5

3

4

∥∥∥∥(3
4

)∥∥∥∥ =
√

32 + 42 = 5

Fact
If x is a vector and c is a scalar, then ‖cx‖ = |c| · ‖x‖.∥∥∥∥(6

8

)∥∥∥∥ =

∥∥∥∥2

(
3
4

)∥∥∥∥ = 2

∥∥∥∥(3
4

)∥∥∥∥ = 10



The Dot Product and Distance

Definition
The distance between two points x , y in Rn is

dist(x , y) = ‖y − x‖.

This is just the length of the vector from x to y .

Example

Let x = (1, 2) and y = (4, 4). Then

dist(x , y) = ‖y − x‖ =

∥∥∥∥(3
2

)∥∥∥∥ =
√

32 + 22 =
√

13.

0

x

y

y −
x



Unit Vectors

Definition
A unit vector is a vector v with length ‖v‖ = 1.

Example

The unit coordinate vectors are unit vectors:

‖e1‖ =

∥∥∥∥∥∥
1

0
0

∥∥∥∥∥∥ =
√

12 + 02 + 02 = 1

Definition
Let x be a nonzero vector in Rn. The unit vector in the direction of x is the

vector
x

‖x‖ .

This is in fact a unit vector:∥∥∥∥ x

‖x‖

∥∥∥∥ =
1

‖x‖‖x‖ = 1.scalar



Unit Vectors
Example

Example

What is the unit vector in the direction of x =

(
3
4

)
?

u =
x

‖x‖ =
1√

32 + 42

(
3
4

)
=

1

5

(
3
4

)
.

x

u
0



Orthogonality

Definition
Two vectors x , y are orthogonal or perpendicular if x · y = 0.
Notation: x ⊥ y means x · y = 0.

Why is this a good definition? The Pythagorean theorem / law of cosines!

x

y

‖x‖

‖y‖

‖x − y‖

α

Law of cosines:

‖x−y‖2 = ‖x‖2 +‖y‖2−2‖x‖ ‖y‖ cosα

α = 90◦ ⇐⇒ cosα = 0

x and y are
perpendicular ⇐⇒ ‖x‖2 + ‖y‖2 = ‖x − y‖2

⇐⇒ x · x + y · y = (x − y) · (x − y)

⇐⇒ x · x + y · y = x · x + y · y − 2x · y
⇐⇒ x · y = 0

Fact: x ⊥ y ⇐⇒ ‖x − y‖2 = ‖x‖2 + ‖y‖2



Orthogonality
Example

Problem: Find all vectors orthogonal to v =

 1
1
−1

.

We have to find all vectors x such that x · v = 0. This means solving the
equation

0 = x · v =

x1

x2

x3

 ·
 1

1
−1

 = x1 + x2 − x3.

The parametric form for the solution is x1 = −x2 + x3, so the parametric vector
form of the general solution is

x =

x1

x2

x3

 = x2

−1
1
0

+ x3

1
0
1

 .

For instance,

−1
1
0

 ⊥
 1

1
−1

 because

−1
1
0

 ·
 1

1
−1

 = 0.



Orthogonality
Example

Problem: Find all vectors orthogonal to both v =

 1
1
−1

 and w =

1
1
1

.

Now we have to solve the system of two homogeneous equations

0 = x · v =

x1

x2

x3

 ·
 1

1
−1

 = x1 + x2 − x3

0 = x · w =

x1

x2

x3

 ·
1

1
1

 = x1 + x2 + x3.

In matrix form: (
1 1 − 1
1 1 1

)
rref

(
1 1 0
0 0 1

)
.

The parametric vector form of the solution isx1

x2

x3

 = x2

−1
1
0

 .

The rows are v and w



Orthogonality
General procedure

Problem: Find all vectors orthogonal to some number of vectors v1, v2, . . . , vm
in Rn.

This is the same as finding all vectors x such that

0 = vT
1 x = vT

2 x = · · · = vT
m x .

Putting the row vectors vT
1 , v

T
2 , . . . , v

T
m

into a matrix, this is the same as finding
all x such that


— vT

1 —
— vT

2 —...
— vT

m —

 x =


v1 · x
v2 · x...
vm · x

 = 0.

The set of all vectors orthogonal to some vec-
tors v1, v2, . . . , vm in Rn is the null space of
the m × n matrix you get by “turning them
sideways and smooshing them together:”


— vT

1 —
— vT

2 —...
— vT

m —

 .

In particular, this set is a subspace!

Important



Summary

I The dot product of vectors x , y in Rn is the number xT y .

I The length or norm of a vector x in Rn is ‖x‖ =
√
x · x .

I The distance between two vectors x , y in Rn is dist(x , y) = ‖y − x‖.
I A unit vector is a vector v with length ‖v‖ = 1.

I The unit vector in the direction of x is x/‖x‖.
I Two vectors x , y are orthogonal if x · y = 0.

I The set of all vectors orthogonal to some vectors v1, v2, . . . , vm in Rn is the
null space of the matrix 

— vT
1 —

— vT
2 —...

— vT
m —

 .



Section 6.2

Orthogonal Complements



Orthogonal Complements

Definition
Let W be a subspace of Rn. Its orthogonal complement is

W⊥ =
{
v in Rn | v · w = 0 for all w in W

}
read “W perp”.

W⊥ is orthogonal complement
AT is transpose

Pictures:

The orthogonal complement of a line in R2 is the
perpendicular line. [interactive]

W
W⊥

The orthogonal complement of a line in R3 is the
perpendicular plane. [interactive]

W⊥
W

The orthogonal complement of a plane in R3 is the
perpendicular line. [interactive]

W
W⊥

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,3&captions=orthog
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.3,0,1&captions=orthog&range=3
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.957,0,-.287&v2=0,1,0&captions=orthog&range=3


Poll

Let W be a 2-plane in R4. How would you describe W⊥?

A. The zero space {0}.
B. A line in R4.

C. A plane in R4.

D. A 3-dimensional space in R4.

E. All of R4.

Poll

For example, if W is the xy -plane, then W⊥ is the zw -plane:
x
y
0
0

 ·


0
0
z
w

 = 0.



Orthogonal Complements
Basic properties

Let W be a subspace of Rn.

Facts:

1. W⊥ is also a subspace of Rn

2. (W⊥)⊥ = W

3. dimW + dimW⊥ = n

4. If A =
(
v1 v2 · · · vm

)
and W = Col A, then W⊥ = Nul(AT ) since

W⊥ = all vectors orthogonal to each v1, v2, . . . , vm

=
{
x in Rn | x · vi = 0 for all i = 1, 2, . . . ,m

}
= Nul


— vT

1 —
— vT

2 —...
— vT

m —

 = Nul(AT ).

Let’s check 1.
I Is 0 in W⊥? Yes: 0 · w = 0 for any w in W .
I Suppose x , y are in W⊥. So x · w = 0 and y · w = 0 for all w in W . Then

(x + y) · w = x · w + y · w = 0 + 0 = 0 for all w in W . So x + y is also in W⊥.
I Suppose x is in W⊥. So x · w = 0 for all w in W . If c is a scalar, then

(cx) · w = c(x · 0) = c(0) = 0 for any w in W . So cx is in W⊥.



Orthogonal Complements
Computation

Problem: if W = Span


 1

1
−1

 ,

1
1
1

, compute W⊥.

By property 4, we have to find the null space of the matrix whose rows are(
1 1 −1

)
and

(
1 1 1

)
, which we did before:

Nul

(
1 1 −1
1 1 1

)
= Span


−1

1
0

 .

[interactive]

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —



http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,1,-1&v2=1,1,1&range=3&captions=orthog


Orthogonal Complements
Row space, column space, null space

Definition
The row space of an m × n matrix A is the span of the rows of A. It is
denoted RowA. Equivalently, it is the column space of AT :

RowA = ColAT .

It is a subspace of Rn.

We showed before that if A has rows vT
1 , v

T
2 , . . . , v

T
m , then

Span{v1, v2, . . . , vm}⊥ = NulA.

Hence we have shown:

Fact: (RowA)⊥ = NulA.

Replacing A by AT , and remembering RowAT = ColA:

Fact: (ColA)⊥ = NulAT .

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: (NulA)⊥ = RowA and ColA = (NulAT )⊥.



Dimension of the row space

Even though Row(A) lives in Rn and Col(A) lives in Rm if A is an m × n
matrix, both subspaces have the same dimension.

Theorem
If A is an m × n matrix, then dim(Row A) = dim(ColA).



Orthogonal Complements
Reference sheet

Orthogonal Complements of Most of the Subspaces We’ve Seen

For any vectors v1, v2, . . . , vm:

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —


For any matrix A:

RowA = ColAT

and

(RowA)⊥ = NulA RowA = (NulA)⊥

(ColA)⊥ = NulAT ColA = (NulAT )⊥

For any other subspace W , first find a basis v1, . . . , vm, then use the above
trick to compute W⊥ = Span{v1, . . . , vm}⊥.



Section 6.3

Orthogonal Projections (will finish in next set of slides)



Best Approximation

Suppose you measure a data point x which you know for theoretical reasons
must lie on a subspace W .

Wy

x

x − y

Due to measurement error, though, the measured x is not actually in W . Best
approximation: y is the closest point to x on W .

How do you know that y is the closest point? The vector from y to x is
orthogonal to W : it is in the orthogonal complement W⊥.



Orthogonal Decomposition

Theorem
Every vector x in Rn can be written as

x = xW + xW⊥

for unique vectors xW in W and xW⊥ in W⊥.

The equation x = xW + xW⊥ is called the orthogonal decomposition of x
(with respect to W ).

The vector xW is the orthogonal projection of x onto W .

The vector xW is the closest vector to x on W .

[interactive 1] [interactive 2]
WxW

x

xW⊥

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed
http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=0,1.1,.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed&subname=W


Orthogonal Decomposition
Justification

Theorem
Every vector x in Rn can be written as

x = xW + xW⊥

for unique vectors xW in W and xW⊥ in W⊥.

Why?

Uniqueness: suppose x = xW + xW⊥ = x ′W + x ′W⊥ for xW , x
′
W in W and

xW⊥ , x
′
W⊥ in W⊥. Rewrite:

xW − x ′W = x ′W⊥ − xW⊥ .

The left side is in W , and the right side is in W⊥, so they are both in W ∩W⊥.
But the only vector that is perpendicular to itself is the zero vector! Hence

0 = xW − x ′W =⇒ xW = x ′W

0 = xW⊥ − x ′W⊥ =⇒ xW⊥ = x ′W⊥

Existence: We will compute the orthogonal decomposition later using
orthogonal projections.



Orthogonal Decomposition
Example

Let W be the xy -plane in R3. Then W⊥ is the z-axis.

x =

2
1
3

 =⇒ xW =

2
1
0

 xW⊥ =

0
0
3

 .

x =

a
b
c

 =⇒ xW =

a
b
0

 xW⊥ =

0
0
c

 .

This is just decomposing a vector into a “horizontal” component (in the
xy -plane) and a “vertical” component (on the z-axis).

x

xW

xW⊥

W

[interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1,0&vec=-1.1,2,1.5&range=3&mode=decomp&closed


Orthogonal Decomposition
Computation?

Problem: Given x and W , how do you compute the decomposition x = xW + xW⊥?

Observation: It is enough to compute xW , because xW⊥ = x − xW .



The ATA Trick

Theorem (The ATA Trick)

Let W be a subspace of Rn, let v1, v2, . . . , vm be a spanning set for W (e.g., a
basis), and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then for any x in Rn, the matrix equation

ATAv = AT x (in the unknown vector v)

is consistent, and xW = Av for any solution v .

I Write W as a column space of a matrix A.

I Find a solution v of ATAv = AT x (by row reducing).

I Then xW = Av and xW⊥ = x − xW .

Recipe for Computing x = xW + xW⊥



The ATA Trick
Example

Problem: Compute the orthogonal projection of a vector x = (x1, x2, x3) in R3

onto the xy -plane.

First we need a basis for the xy -plane: let’s choose

e1 =

1
0
0

 e2 =

0
1
0

 A =

 1 0
0 1
0 0

 .

Then

ATA =

(
1 0
0 1

)
= I2 AT

x1

x2

x3

 =

(
1 0 0
0 1 0

)x1

x2

x3

 =

(
x1

x2

)
.

Then ATAv = v and AT x =
(
x1
x2

)
, so the only solution of ATAv = AT x is

v =
(
x1
x2

)
. Therefore,

xW = Av = A

(
x1

x2

)
=

 1 0
0 1
0 0

(x1

x2

)
=

x1

x2

0

 .



The ATA Trick
Another Example

Problem: Let

x =

1
2
3

 W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0

 .

Compute the distance from x to W .

The distance from x to W is ‖xW⊥‖, so we need to compute the orthogonal
projection. First we need a basis for W = Nul

(
1 −1 1

)
. This matrix is in

RREF, so the parametric form of the solution set is

x1 = x2 − x3

x2 = x2

x3 = x3

PVF

x1

x2

x3

 = x2

1
1
0

+ x3

−1
0
1

 .

Hence we can take a basis to be
1

1
0

 ,

−1
0
1

 A =

 1 −1
1 0
0 1





The ATA Trick
Another Example, Continued

Problem: Let

x =

1
2
3

 W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0

 .

Compute the distance from x to W .

We compute

ATA =

(
2 −1
−1 2

)
AT x =

(
3
2

)
.

To solve ATAv = AT x we form an augmented matrix and row reduce:(
2 −1 3
−1 2 2

)
RREF

(
1 0 8/3
0 1 7/3

)
v =

1

3

(
8
7

)
.

xW = Av =
1

3

1
8
7

 xW⊥ = x − xW =
1

3

 2
−2
2

 .

The distance is ‖xW⊥‖ = 1
3

√
4 + 4 + 4 ≈ 1.155. [interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,-1&u2=-1,-2,-1&vec=1,2,3&labels=v1,v2&range=3.5&closed&mode=decomp


The ATA Trick
Proof

Theorem (The ATA Trick)

Let W be a subspace of Rn, let v1, v2, . . . , vm be a spanning set for W (e.g., a
basis), and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then for any x in Rn, the matrix equation

ATAv = AT x (in the unknown vector v)

is consistent, and xW = Av for any solution v .

Proof: Let x = xW + xW⊥ . Then xW⊥ is in W⊥ = Nul(AT ), so AT xW⊥ = 0.
Hence

AT x = AT (xW + xW⊥) = AT xW + AT xW⊥ = AT xW .

Since xW is in W = Span{v1, v2, . . . , vm}, we can write

xW = c1v1 + c2v2 + · · ·+ cmvm.

If v = (c1, c2, . . . , cm) then Av = xW , so

AT x = AT xW = ATAv .



Orthogonal Projection onto a Line

Problem: Let L = Span{u} be a line in Rn and let x be a vector in Rn.
Compute xL.

We have to solve uTuv = uT x , where u is an n × 1 matrix. But uTu = u · u
and uT x = u · x are scalars, so

v =
u · x
u · u =⇒ xL = uv =

u · x
u · u u.

The projection of x onto a line L = Span{u} is

xL =
u · x
u · u u xL⊥ = x − xL.

Projection onto a Line

L

u

x

xL =
u · x
u · u

u

xL⊥



Orthogonal Projection onto a Line
Example

Problem: Compute the orthogonal projection of x =
(−6

4

)
onto the line L

spanned by u =
(

3
2

)
, and find the distance from u to L.

xL =
x · u
u · u u =

−18 + 8

9 + 4

(
3
2

)
= −10

13

(
3
2

)
xL⊥ = x − xL =

1

13

(
−48
72

)
.

The distance from x to L is

‖xL⊥‖ =
1

13

√
482 + 722 ≈ 6.656.

L

(
3
2

)
(
−6
4

)

−
10

13

(
3
2

)

[interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=3,2&vec=-6,4&labels=u&closed&mode=distance


Summary

Let W be a subspace of Rn.

I The orthogonal complement W⊥ is the set of all vectors orthogonal to
everything in W .

I We have (W⊥)⊥ = W and dimW + dimW⊥ = n.

I RowA = ColAT , (RowA)⊥ = NulA, RowA = (NulA)⊥,
(ColA)⊥ = NulAT , ColA = (NulAT )⊥.

I Orthogonal decomposition: any vector x in Rn can be written in a
unique way as x = xW + xW⊥ for xW in W and xW⊥ in W⊥. The vector
xW is the orthogonal projection of x onto W .

I The vector xW is the closest point to x in W : it is the best approximation.

I The distance from x to W is ‖xW⊥‖.
I If W = ColA then to compute xW , solve the equation ATAv = AT x ; then

xW = Av .

I If W = L = Span{u} is a line then xL = u·x
u·u u.



Orthogonal Projections
Review of 6.3 so far

Recall: Let W be a subspace of Rn.

I The orthogonal complement W⊥ is the set of vectors orthogonal to
everything in W .

I The orthogonal decomposition of a vector x with respect to W is the
unique way of writing x = xW + xW⊥ for xW in W and xW⊥ in W⊥.

I The vector xW is the orthogonal projection of x onto W . It is the closest
vector to x in W .

I To compute xW , write W as ColA and solve ATAv = AT x ; then xW = Av .

W

W⊥

xW

x

xW⊥



Projection as a Transformation

Change in Perspective: let us consider orthogonal projection as a
transformation.

Definition
Let W be a subspace of Rn. Define a transformation

T : Rn −→ Rn by T (x) = xW .

This transformation is also called orthogonal projection with respect to W .

Theorem
Let W be a subspace of Rn and let T : Rn → Rn be the orthogonal projection
with respect to W . Then:

1. T is a linear transformation.

2. For every x in Rn, T (x) is the closest vector to x in W .

3. For every x in W , we have T (x) = x .

4. For every x in W⊥, we have T (x) = 0.

5. T ◦ T = T .

6. The range of T is W and the null space of T is W⊥.



Projection Matrix
Method 1

Let W be a subspace of Rn and let T : Rn → Rn be the orthogonal projection
with respect to W .

Since T is a linear transformation, it has a matrix. How do you compute it?

The same as any other linear transformation: compute T (e1),T (e2), . . . ,T (en).



Projection Matrix
Example

Problem: Let L = Span
{(

3
2

)}
and let T : R2 → R2 be the orthogonal projection

onto L. Compute the matrix A for T .

It’s easy to compute orthogonal projection onto a line:

T (e1) = (e1)L =
u · e1

u · u u =
3

13

(
3
2

)
T (e2) = (e2)L =

u · e2

u · u u =
2

13

(
3
2

)
 =⇒ A =

1

13

(
9 6
6 4

)
.



Projection Matrix
Another Example

Problem: Let

W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0


and let T : R3 → R3 be orthogonal projection onto W . Compute the matrix B
for T .

In the slides for the last lecture we computed W = ColA for

A =

 1 −1
1 0
0 1

 .

To compute T (ei ) we have to solve the matrix equation ATAv = AT ei . We
have

ATA =

(
2 −1
−1 2

)
AT ei = the ith column of AT =

(
1 1 0
−1 0 1

)
.



Projection Matrix
Another Example, Continued

Problem: Let

W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0


and let T : R3 → R3 be orthogonal projection onto W . Compute the matrix B
for T .

(
2 −1 1
−1 2 −1

)
RREF

(
1 0 1/3
0 1 −1/3

)
=⇒ T (e1) =

1

3
A

(
1
−1

)
=

1

3

 2
1
−1


(

2 −1 1
−1 2 0

)
RREF

(
1 0 2/3
0 1 1/3

)
=⇒ T (e2) =

1

3
A

(
2
1

)
=

1

3

 1
2
1


(

2 −1 0
−1 2 1

)
RREF

(
1 0 1/3
0 1 2/3

)
=⇒ T (e2) =

1

3
A

(
1
2

)
=

1

3

−1
1
2


=⇒ B =

1

3

 2 1 −1
1 2 1
−1 1 2

 .



Projection Matrix
Method 2

Theorem
Let {v1, v2, . . . , vm} be a linearly independent set in Rn, and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then the m ×m matrix ATA is invertible.

Proof: We’ll show Nul(ATA) = {0}. Suppose ATAv = 0. Then Av is in
Nul(AT ) = Col(A)⊥. But Av is in Col(A) as well, so Av = 0, and hence v = 0
because the columns of A are linearly independent.



Projection Matrix
Method 2

Theorem
Let {v1, v2, . . . , vm} be a linearly independent set in Rn, and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then the m ×m matrix ATA is invertible.

Let W be a subspace of Rn and let T : Rn → Rn be the orthogonal projection
with respect to W . Let {v1, v2, . . . , vm} be a basis for W and let A be the
matrix with columns v1, v2, . . . , vm. To compute T (x) = xW you solve
ATAv = Ax ; then xW = Av .

v = (ATA)−1(AT x) =⇒ T (x) = Av =
[
A(ATA)−1AT ]x .

If the columns of A are a basis for W then the matrix for T is

A(ATA)−1AT .



Projection Matrix
Example

Problem: Let L = Span
{(

3
2

)}
and let T : R2 → R2 be the orthogonal projection

onto L. Compute the matrix A for T .

The set
{(

3
2

)}
is a basis for L, so

A = u(uTu)−1uT =
1

u · u uu
T =

1

13

(
3
2

)(
3 2

)
=

1

13

(
9 6
6 4

)
.

If L = Span{u} is a line in Rn, then the matrix for projection onto L is

1

u · u uu
T .

Matrix of Projection onto a Line



Projection Matrix
Another Example

Problem: Let

W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0


and let T : R3 → R3 be orthogonal projection onto W . Compute the matrix B
for T .

In the slides for the last lecture we computed W = ColA for

A =

 1 −1
1 0
0 1

 .

The columns are linearly independent, so they form a basis for W . Hence

B = A(ATA)−1AT = A

(
2 −1
−1 2

)−1

AT =
1

3
A

(
2 1
1 2

)
AT

=
1

3

 2 1 −1
1 2 1
−1 1 2

 .



Poll

Let W be a subspace of Rn which is neither the zero subspace nor all of Rn.

Let A be the matrix for projW . What is/are the eigenvalue(s) of A?

A. 0 B. 1 C. −1 D. 0, 1 E. 1, −1 F. 0, −1 G. −1, 0, 1

Poll

The 1-eigenspace is W .

The 0-eigenspace is W⊥.

We have dimW + dimW⊥ = n, so that gives n linearly independent
eigenvectors already.

So the answer is D.



Projection Matrix
Facts

Theorem
Let W be an m-dimensional subspace of Rn, let T : Rn →W be the projection,
and let A be the matrix for T . Then:

1. ColA = W , which is the 1-eigenspace.

2. NulA = W⊥, which is the 0-eigenspace.

3. A2 = A.

4. A is similar to the diagonal matrix with m ones and n −m zeros on the
diagonal.

Proof of 4: Let v1, v2, . . . , vm be a basis for W , and let vm+1, vm+2, . . . , vn be a
basis for W⊥. These are (linearly independent) eigenvectors with eigenvalues 1
and 0, respectively, and they form a basis for Rn because there are n of them.

Example: If W is a plane in R3, then A is similar to projection onto the
xy -plane:  1 0 0

0 1 0
0 0 0

 .



A Projection Matrix is Diagonalizable

Let W be an m-dimensional subspace of Rn, let T : Rn → Rn be the
orthogonal projection onto W , and let A be the matrix for T . Here’s
how to diagonalize A:

I Find a basis {v1, v2, . . . , vm} for W .

I Find a basis {vm+1, vm+2, . . . , vn} for W⊥.

I Then

A =

 | | |
v1 v2 · · · vn
| | |

 1 0 0
0 1 0
0 0 0

 | | |
v1 v2 · · · vn
| | |

−1
m ones, n −m zeros

Remark: If you already have a basis for W , then it’s faster to compute
A(ATA)−1AT .



A Projection Matrix is Diagonalizable
Example

Problem: Let

W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0


and let T : R3 → R3 be orthogonal projection onto W . Compute the matrix B
for T .

As we have seen several times, a basis for W is
1

1
0

 ,

−1
0
1

 .

By definition, W is the orthogonal complement of the line spanned by
(1,−1, 1), so W⊥ = Span{(1,−1, 1)}. Hence

B =

 1 −1 1
1 0 −1
0 1 1

 1 0 0
0 1 0
0 0 0

 1 −1 1
1 0 −1
0 1 1

−1

=
1

3

 2 1 −1
1 2 1
−1 1 2

 .



General Reflections (Just for fun!)

Let W be a subspace of Rn and let x be a vector in Rn.

Definition
The reflection of x over W is the vector refW (x) = x − 2xW⊥ .

In other words, to find refW (x) one starts at x , then
moves to x−xW⊥ = xW , then continues in the same
direction one more time, to end on the opposite side
of W .

W

x

xW

−xW⊥

−xW⊥−xW⊥
refW (x)

Since xW⊥ = x − xW we have

refW (x) = x − 2(x − xW ) = 2xW − x .

If T is the orthogonal projection, then

refW (x) = 2T (x)− x .



Reflections
Properties

Theorem
Let W be an m-dimensional subspace of Rn, and let A be the matrix for refW .
Then

1. refW ◦ refW is the identity transformation and A2 is the identity matrix.

2. refW and A are invertible; they are their own inverses.

3. The 1-eigenspace of A is W and the −1-eigenspace of A is W⊥.

4. A is similar to the diagonal matrix with m ones and n −m negative ones
on the diagonal.

5. If B is the matrix for the orthogonal projection onto W , then A = 2B − In.

Example: Let

W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0

 .

The matrix for refW is

A = 2 · 1

3

 2 1 −1
1 2 1
−1 1 2

− I3 =
1

3

 1 2 −2
2 1 2
−2 2 1

 .



Summary

Today we considered orthogonal projection as a transformation.

I Orthogonal projection is a linear transformation.

I We gave three methods to compute its matrix.

I Four if you count the special case when W is a line.

I The matrix for projection onto W has eigenvalues 1 and 0 with
eigenspaces W and W⊥.

I A projection matrix is diagonalizable.

I Reflection is 2×projection minus the identity.



Section 6.5

The Method of Least Squares



Motivation

We now are in a position to solve the motivating problem of this third part of
the course:

Suppose that Ax = b does not have a solution. What is
the best possible approximate solution?

Problem

To say Ax = b does not have a solution means that b is not in ColA.

The closest possible b̂ for which Ax = b̂ does have a solution is b̂ = bCol A.

Then Ax̂ = b̂ is a consistent equation.

A solution x̂ to Ax̂ = b̂ is a least squares solution.



Least Squares Solutions

Let A be an m × n matrix.

Definition
A least squares solution of Ax = b is a vector x̂ in Rn such that

‖b − Ax̂‖ ≤ ‖b − Ax‖

for all x in Rn.

ColA

Ax

Ax

Ax

Ax̂ = b̂ = bCol A

b

b − Ax̂
Note that b − Ax̂

is in (ColA)⊥.
[interactive]

In other words, a least squares solution x̂ solves Ax = b as closely as possible.

Equivalently, a least squares solution to Ax = b is a vector x̂ in Rn such that

Ax̂ = b̂ = bCol A.

This is because b̂ is the closest vector to b such that Ax̂ = b̂ is consistent.

http://textbooks.math.gatech.edu/ila/demos/leastsquares.html?v1=0,1,0&v2=1.1,0,-.2&range=3&vec=1,1,1


Least Squares Solutions
Computation

We want to solve Ax̂ = b̂ = bCol A. Or, Ax̂ = bW for W = ColA.

To compute bW we need to solve ATAv = ATb; then bW = Av .

Conclusion: x̂ is just a solution of ATAv = ATb!

Theorem
The least squares solutions of Ax = b are the solutions of

(ATA)x̂ = ATb.

Note we compute x̂ directly, without computing b̂ first.



Least Squares Solutions
Example

Find the least squares solutions of Ax = b where:

A =

 0 1
1 1
2 1

 b =

6
0
0

 .

We have

ATA =

(
0 1 2
1 1 1

) 0 1
1 1
2 1

 =

(
5 3
3 3

)
and

ATb =

(
0 1 2
1 1 1

)6
0
0

 =

(
0
6

)
.

Row reduce: (
5 3 0
3 3 6

) (
1 0 −3
0 1 5

)
.

So the only least squares solution is x̂ =

(
−3
5

)
.



Least Squares Solutions
Example, continued

How close did we get?

b̂ = Ax̂ =

 0 1
1 1
2 1

(−3
5

)
=

 5
2
−1


The distance from b is

‖b − Ax̂‖ =

∥∥∥∥∥∥
6

0
0

−
 5

2
−1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 1
−2
1

∥∥∥∥∥∥ =
√

12 + (−2)2 + 12 =
√

6.

ColA

v2

v1
5v2

−3v1
√

6

bCol(A) = A

(
−3
5

)

b

[interactive]
Note that(

−3

5

)
records the coefficients
of v1 and v2 in b̂.

http://textbooks.math.gatech.edu/ila/demos/leastsquares.html?v1=1,1,1&v2=1,0,2&range=6.5&vec=0,6,0


Least Squares Solutions
Second example

Find the least squares solutions of Ax = b where:

A =

 2 0
−1 1

0 2

 b =

 1
0
−1

 .

We have

ATA =

(
2 −1 0
0 1 2

) 2 0
−1 1

0 2

 =

(
5 −1
−1 5

)
and

ATb =

(
2 −1 0
0 1 2

) 1
0
−1

 =

(
2
−2

)
.

Row reduce: (
5 −1 2
−1 5 −2

) (
1 0 1/3
0 1 −1/3

)
.

So the only least squares solution is x̂ =

(
1/3
−1/3

)
. [interactive]

http://textbooks.math.gatech.edu/ila/demos/leastsquares.html?v1=2,-1,0&v2=0,1,2&vec=1,0,-1&range=3


Least Squares Solutions
Uniqueness

When does Ax = b have a unique least squares solution x̂?

Theorem
Let A be an m × n matrix. The following are equivalent:

1. Ax = b has a unique least squares solution for all b in Rm.

2. The columns of A are linearly independent.

3. ATA is invertible.

In this case, the least squares solution is (ATA)−1(ATb).

Why? If the columns of A are linearly dependent, then Ax̂ = b̂ has many
solutions:

ColA

v1

v2

v3

b̂ = Ax̂

b

[interactive]

Note: ATA is always a square matrix, but it need not be invertible.

http://textbooks.math.gatech.edu/ila/demos/leastsquares.html?v1=1,1,1&v2=0,1,2&v3=1,-1,-3&vec=6,0,0&range=6.5


Application
Data modeling: best fit line

Find the best fit line through (0, 6), (1, 0), and (2, 0).

The general equation of a line is

y = C + Dx .

So we want to solve:

6 = C + D · 0
0 = C + D · 1
0 = C + D · 2.

In matrix form: 1 0
1 1
1 2

(C
D

)
=

6
0
0

 .

We already saw: the least squares solution is(
5
−3

)
. So the best fit line is

y = −3x + 5.

(0, 6)

(1, 0)

(2, 0)

1

−2

1

y
=
−

3x
+

5

A

(
5
−3

)
−

6
0
0

 =

 1
−2
1



[interactive]

http://textbooks.math.gatech.edu/ila/demos/bestfit.html?v1=0,6&v2=1,0&v3=2,0&range=7


Poll

What does the best fit line minimize?

A. The sum of the squares of the distances from the
data points to the line.

B. The sum of the squares of the vertical distances
from the data points to the line.

C. The sum of the squares of the horizontal distances
from the data points to the line.

D. The maximal distance from the data points to the
line.

Poll

Answer: B. See the picture on the previous slide.



Application
Best fit ellipse

Find the best fit ellipse for the points (0, 2), (2, 1), (1,−1), (−1,−2), (−3, 1), (−1,−1).

The general equation for an ellipse is

x2 + Ay 2 + Bxy + Cx + Dy + E = 0

So we want to solve:

(0)2 + A(2)2 + B(0)(2) + C(0) + D(2) + E = 0

(2)2 + A(1)2 + B(2)(1) + C(2) + D(1) + E = 0

(1)2 + A(−1)2 + B(1)(−1) + C(1) + D(−1) + E = 0

(−1)2 + A(−2)2 + B(−1)(−2) + C(−1) + D(−2) + E = 0

(−3)2 + A(1)2 + B(−3)(1) + C(−3) + D(1) + E = 0

(−1)2 + A(−1)2 + B(−1)(−1) + C(−1) + D(−1) + E = 0

In matrix form: 
4 0 0 2 1
1 2 2 1 1
1 −1 1 −1 1
4 2 −1 −2 1
1 −3 −3 1 1
1 1 −1 −1 1




A
B
C
D
E

 =


0
−4
−1
−1
−9
−1

 .



Application
Best fit ellipse, continued

A =


4 0 0 2 1
1 2 2 1 1
1 −1 1 −1 1
4 2 −1 −2 1
1 −3 −3 1 1
1 1 −1 −1 1

 b =


0
−4
−1
−1
−9
−1

 .

ATA =


36 7 −5 0 12

7 19 9 −5 1
−5 9 16 1 −2

0 −5 1 12 0
12 1 −2 0 6

 ATb =


−19

17
20
−9
−16


Row reduce:

36 7 −5 0 12 −19
7 19 9 −5 1 17
−5 9 16 1 −2 20

0 −5 1 12 0 −9
12 1 −2 0 6 −16




1 0 0 0 0 405/266
0 1 0 0 0 −89/133
0 0 1 0 0 201/133
0 0 0 1 0 −123/266
0 0 0 0 1 −687/133


Best fit ellipse:

x2 +
405

266
y 2 − 89

133
xy +

201

133
x − 123

266
y − 687

133
= 0

or

266x2 + 405y 2 − 178xy + 402x − 123y − 1374 = 0.



Application
Best fit ellipse, picture

(0, 2)

(2, 1)

(1,−1)

(−1,−2)

(−3, 1)

(−1, 1)

266x2 + 405y 2 − 178xy + 402x − 123y − 1374 = 0

[interactive]

Remark: Gauss invented the method of least squares to do exactly this: he
predicted the (elliptical) orbit of the asteroid Ceres as it passed behind the sun
in 1801.

http://textbooks.math.gatech.edu/ila/demos/bestfit-implicit.html?func=x^2+A*y^2+B*x*y+C*x+D*y+EE&v1=0,2&v2=2,1&v3=1,-1&v4=-1,-2&v5=-3,1&v6=-1,1&range=5&rangez=25&camera1=-2.14,.814,1.69


Application
Best fit parabola

What least squares problem Ax = b finds the best parabola through the points
(−1, 0.5), (1,−1), (2,−0.5), (3, 2)?

The general equation for a parabola is

y = Ax2 + Bx + C .

So we want to solve:

0.5 = A(−1)2 + B(−1) + C

−1 = A(1)2 + B(1) + C

−0.5 = A(2)2 + B(2) + C

2 = A(3)2 + B(3) + C

In matrix form: 
1 −1 1
1 1 1
4 2 1
9 3 1


A
B
C

 =


0.5
−1
−0.5

2

 .

Answer: 88y = 53x2 − 379

5
x − 82



Application
Best fit parabola, picture

(−1, 0.5)

(1,−1)
(2,−0.5)

(3, 2)

88y = 53x2 − 379

5
x − 82

[interactive]

http://textbooks.math.gatech.edu/ila/demos/bestfit.html?func=A*x^2+B*x+C&v1=-1,.5&v2=1,-1&v3=2,-.5&v4=3,2&range=5


Application
Best fit linear function

What least squares problem Ax = b finds the best
linear function f (x , y) fitting the following data?

The general equation for a linear function in two
variables is

f (x , y) = Ax + By + C .

x y f (x , y)
1 0 0
0 1 1
−1 0 3

0 −1 4

So we want to solve
A(1) + B(0) + C = 0

A(0) + B(1) + C = 1

A(−1) + B(0) + C = 3

A(0) + B(−1) + C = 4

In matrix form: 
1 0 1
0 1 1
−1 0 1

0 −1 1


A
B
C

 =


0
1
3
4

 .

Answer: f (x , y) = −3

2
x − 3

2
y + 2



Application
Best fit linear function, picture

x

y

f (x , y)
Graph of

f (x , y) = −
3

2
x −

3

2
y + 2

f (1, 0)

(1, 0, 0)

f (0, 1)

(0, 1, 1)

f (−1, 0)

(−1, 0, 3)f (0,−1)

(0,−1, 4)

[interactive]

http://textbooks.math.gatech.edu/ila/demos/bestfit.html?func=A*x+B*y+C&v1=1,0,0&v2=0,1,1&v3=-1,0,3&v4=0,-1,4&range=5


Application
Best-fit Trigonometric Function

For fun: what is the best-fit function of the form

y = A + B cos(x) + C sin(x) + D cos(2x) + E sin(2x) + F cos(3x) + G sin(3x)

passing through the points(
−4
−1

)
,

(
−3
0

)
,

(
−2
−1.5

)
,

(
−1
.5

)
,

(
0
1

)
,

(
1
−1

)
,

(
2
−.5

)
,

(
3
2

)
,

(
4
−1

)
?

(−4,−1)

(−3, 0)

(−2,−1.5)

(−1, .5)

(0, 1)

(1,−1)

(2,−.5)

(3, 2)

(4,−1)

y ≈ −0.14 + 0.26 cos(x) − 0.23 sin(x) + 1.11 cos(2x) − 0.60 sin(2x) − 0.28 cos(3x) + 0.11 sin(3x)

[interactive]

http://textbooks.math.gatech.edu/ila/demos/bestfit.html?func=A+B*cos(x)+C*sin(x)+D*cos(2*x)+EE*sin(2*x)+F*cos(3*x)+G*sin(3*x)&v1=-4,-1&v2=-3,0&v3=-2,-1.5&v4=-1,.5&v5=0,1&v6=1,-1&v7=2,-.5&v8=3,2&v9=4,-1&range=5


Summary

I A least squares solution of Ax = b is a vector x̂ such that b̂ = Ax̂ is as
close to b as possible.

I This means that b̂ = bCol A.

I One way to compute a least squares solution is by solving the system of
equations

(ATA)x̂ = ATb.

Note that ATA is a (symmetric) square matrix.

I Least-squares solutions are unique when the columns of A are linearly
independent.

I You can use least-squares to find best-fit lines, parabolas, ellipses, planes,
etc.


