Announcements Oct 27

- Masks \rightsquigarrow Thank you!
- *•* Studio but no quiz Friday
- WeBWorK 4 due Tue **@** midnight
- Office hrs: Tue 4-5 Teams $+$ Thu 1-2 Skiles courtyard/Teams $+$ Pop-ups?
- *•* Midterm 3 Nov 17 8–9:15 on Teams, Sec. 3.5–5.5
- Many TA office hours listed on Canvas
- *•* PLUS sessions: Tue 6–7 GT Connector, Thu 6–7 BlueJeans
- Math Lab: Mon–Thu 11–6, Fri 11–3 Skiles Courtyard (going hybrid!)

Kロト K団 K K ミト K ヨ K ニョー YO Q O

- *•* Section M web site: Google "Dan Margalit math", click on 1553
	- \blacktriangleright future blank slides, past lecture slides, advice
- *•* Old exams: Google "Dan Margalit math", click on Teaching
- *•* Tutoring: <http://tutoring.gatech.edu/tutoring>
- *•* Counseling center: <https://counseling.gatech.edu>
- *•* Use Piazza for general questions
- *•* You can do it!

Section 4.1

The definition of the determinant

Kロト K団 K K ミト K ミト 「ミ」 の Q Q <

The definition of determinant

The determinant of a *square* matrix is a number so that

- 1. If we do a row replacement on a matrix, the determinant is unchanged
- 2. If we swap two rows of a matrix, the determinant scales by -1
- 3. If we scale a row of a matrix by *k*, the determinant scales by *k*

4. $\det(I_n)=1$

Why would we think of this? *Answer: This is exactly how volume works.*
Try it out for 2×2 matrices.

Today: A formula tor det like $det (a^b) = ad-bc$

Properties of the determinant

Fact 1. There is such a number det and it is unique.

Fact 2. *A* is invertible \Leftrightarrow det(*A*) \neq 0 important!

Fact 3. $\det A = (-1)^{\text{\#row swaps used}} \left(\frac{\text{product of diagonal entries of row reduced matrix}}{\text{product of scalings used}} \right)$ Fact 4. The function can be computed by any of the $2n$ cofactor expansions. 160° chain ruleFact 5. $det(AB) = det(A) det(B)$ important! Fact 6. $det(A^T) = det(A)$ ok, now we need to say what transpose is Fact 7. det(*A*) is signed volume of the parallelepiped spanned by cols of *A*. If you want the proofs, see the book. Actually Fact 1 is the hardest! $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$ E

Section 4.3

The determinant and volumes

Areas of triangles

What is the area of the triangle in \mathbb{R}^2 with vertices $(1,2)$, $(4,3)$, and $(2,5)$?

 OQ

 $\sqrt{\omega}$

Determinants and linear transformations

Say *A* is an $n \times n$ matrix and $T(v) = Av$.

Fact 8. If *S* is some subset of \mathbb{R}^n , then $\text{vol}(T(S)) = |\det(A)| \cdot \text{vol}(S)$. apply T to every pt of S

This works even if *S* is curvy, like a circle or an ellipse, or:

Why? First check it for little squares/cubes (Fact-7). Then: Calculus! $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q ①

Determinants and linear transformations

Say *A* is an $n \times n$ matrix and $T(v) = Av$.

Fact 8. If *S* is some subset of \mathbb{R}^n , then $\text{vol}(T(S)) = |\det(A)| \cdot \text{vol}(S)$.

Take *S* to be the unit disk in \mathbb{R}^2 , that is, the set of points that have distance at most 1 from the origin. Let $A = (\frac{2}{4}\frac{2}{2})$, and let $T(v) = Av$ be its matrix transformation. What is the area of *A*(*S*)? (5) 1111 area: $\det(A)$ areas area $\pi .1^2$ = π $14 - 81$ M $= 4\pi$

Section 4.2

Cofactor expansions

Kロト K個 K K ミト K ミト ニヨー のQ (V)

Outline of Section 4.2

• We will give a recursive formula for the determinant of a square matrix.

A formula for the determinant

We will give a recursive formula.

First some terminology:

First some terminology:
\n
$$
A_{ij} = i jth \text{ minor of } A
$$
\n
$$
A_{ij} = (n-1) \times (n-1) \text{ matrix obtained by deleting the } i \text{th row and } j \text{th column}
$$
\n
$$
A_{13} = \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix} \qquad A_{12} = \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}
$$

 $A = \begin{pmatrix} 4 & 6 & 6 \ 7 & 8 & 9 \end{pmatrix}$ $A_n = \begin{pmatrix} 6 & 9 \ 8 & 9 \end{pmatrix}$

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q

$$
C_{ij} = (-1)^{i+j} \det(A_{ij})
$$
\n
$$
= i j \text{th cofactor of } A
$$
\n
$$
C_{11} = (-1)^{i+j} \det A_{11} = 1 - 5 = -3
$$
\nFinally:\n
$$
en^{1} \int_{S^{1}}^{S^{1}} e^{s} \, ds
$$
\n
$$
= \frac{1!}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1!}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1!}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1!}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{S^{2}}^{S^{2}} e^{s} \, ds
$$
\n
$$
= \frac{1}{(n+1)!} \int_{
$$

So we find the determinant of a 3×3 matrix in terms of the determinants of

 2×2 matrices, etc.

Determinants

Consider

$$
A = \begin{pmatrix} 5 & 1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix}
$$

Compute the following:

A formula for the determinant

We can take the recursive formula further....

$$
\det(A) = a_{11}(\det(A_{11})) - a_{12}(\det(A_{12})) + \cdots \pm a_{1n}(\det(A_{1n}))
$$

Say that....

 1×1 matrices

 $\det(a_{11}) = a_{11}$

Now apply the formula to...

 2×2 matrices

$$
\det\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) = \alpha_{11}\beta_{22} - \alpha_{12}\beta_{2}
$$

(Could also go really nuts and define the determinant of a 0×0 matrix to be 1 and use the formula to get the formula for 1×1 matrices...)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ めぬ◎

A formula for the determinant

 3×3 matrices

$$
\det \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right) = \cdots
$$

You can write this out. And it is a good exercise. But you won't want to memorize it.

Kロト K個 K K ミト K ミト ニミー の Q Q

Expanding across other rows and columns

The formula we gave for $\det(A)$ is the expansion across the first row. It turns out you can compute the determinant by expanding across any row or column:

$$
\det(A) = a_{i1}C_{i1} + \dots + a_{in}C_{in} \text{ for any fixed } i
$$

$$
\det(A) = a_{1j}C_{1j} + \dots + a_{nj}C_{nj} \text{ for any fixed } j
$$

$$
\left(\bigoplus_{i=1}^{n}\frac{1}{i}\left(\bigoplus_{i=1}^{n}\frac{1}{i}\right)\right)
$$

Or for odd rows and columns:

$$
\det(A) = a_{i1}(\det(A_{i1})) - a_{i2}(\det(A_{i2})) + \cdots \pm a_{in}(\det(A_{in}))
$$

$$
\det(A) = a_{1j}(\det(A_{1j})) - a_{2j}(\det(A_{2j})) + \cdots \pm a_{nj}(\det(A_{nj}))
$$

and for even rows and columns:

$$
\det(A) = -a_{i1}(\det(A_{i1})) + a_{i2}(\det(A_{i2})) + \cdots \mp a_{in}(\det(A_{in}))
$$
\n
$$
\det(A) = -a_{1j}(\det(A_{1j})) + a_{2j}(\det(A_{2j})) + \cdots \mp a_{nj}(\det(A_{nj}))
$$
\nAnswersly, these are all the same!

\n
$$
3^{rd} \text{ col} : \text{ O} : \text{ don't } \text{Cae} = \text{ O} : \text{ don't } \text{car}
$$
\nCompute:

\n
$$
+ 1 \cdot \det\left(\frac{2 \text{ O}}{1 \text{ O}}\right) \quad \text{2}^{rd} \text{ col} : -1 \cdot 1 + 1 \cdot 2 + 0 = 1
$$
\nLet $\left(\frac{2 \text{ O}}{5 \text{ O}}\right)$ $\text{O} : \text{ Con}$ \therefore $-1 \cdot 1 + 1 \cdot 2 + 0 = 1$

 $(-1)^{i+j}$ Another! $\det \left(\left(\begin{matrix} 0 & 6 \ \sqrt{8} \\ \sqrt{1/2} & 0 \ 0 \\ 0 & 1/2 \end{matrix} \right) \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} \right) =$ $+8.\frac{1}{4} = 2$. $3rd$ col $-1/2$ det $(58) = -1/2 - 4 = 2$ 9^{nd} row

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q Q O

Determinants of triangular matrices

If A is upper (or lower) triangular, $\det(A)$ is easy to compute with cofactor expansions (it was also easy using the definition of the determinant):

$$
\det \begin{pmatrix} 2 & 1 & 5 & -2 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 5 & 9 \\ 0 & 0 & 0 & 10 \end{pmatrix}
$$

\n
$$
1^{3^{\frac{1}{3}}} \text{col}: +2 \cdot \det \begin{pmatrix} 1 & 2 & -3 \\ 0 & 5 & 9 \\ 0 & 0 & 10 \end{pmatrix}
$$

\n
$$
= +2 \cdot 1 \cdot \det \begin{pmatrix} 5 & 9 \\ 0 & 10 \end{pmatrix}
$$

\n
$$
= +2 \cdot 1 \cdot 50 = 100
$$

Determinants

Kロト K団 K K ミト K ミト ニミー つくぐ

A formula for the inverse

(from Section 3.3)

 2×2 matrices

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \leadsto \quad A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
$$

 $n \times n$ matrices

$$
A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} C_{11} & \cdots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \cdots & C_{nn} \end{pmatrix}
$$

= $\frac{1}{\det(A)} (C_{ij})^T$ *probability of the first*
Check that these agree! $\begin{pmatrix} 0 & C & \overline{S} \\ I_{12} & 0 & 0 \\ 0 & I_{12} & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 2 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 2 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 2 & 0 \end{pmatrix}$

The proof uses Cramer's rule (see the notes on the course home page. We're not testing on this - it's just for your information.)

Summary of Section 4.2

• There is a recursive formula for the determinant of a square matrix:

 $\det(A) = a_{11}(\det(A_{11})) - a_{12}(\det(A_{12})) + \cdots \pm a_{1n}(\det(A_{1n}))$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- *•* We can use the same formula along any row/column.
- There are special formulas for the 2×2 and 3×3 cases.

Typical Exam Questions 4.2

- *•* True or false. The cofactor expansion across the first row gives the negative of the cofactor expansion across the second row.
- *•* Find the determinant of the following matrix using one of the formulas from this section:

$$
\left(\begin{array}{rrr} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & 0 & 9 \end{array}\right)
$$

• Find the determinant of the following matrix using one of the formulas from this section:

$$
\left(\begin{array}{rrr} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{array}\right)
$$

Kロト K団 K K ミト K ヨ K ニョー YO Q O

• Find the cofactor matrix for the above matrix and use it to find the inverse.