Announcements Sep 15

- \bullet Masks \rightsquigarrow extra credit.
- Quiz 2.1 & 2.2 Friday. Open 6:30a–8p on Canvas/Assignments, 15 mins
- WeBWorK 2.3 & 2.4 due Tuesday nite
- Use Piazza for general questions
- Office hrs: Tue 4-5 Teams $+$ Thu 1-2 Skiles courtyard/Teams $+$ Pop-ups
- Many TA office hours listed on Canvas
- Section M web site: Google "Dan Margalit math", click on 1553
	- \blacktriangleright future blank slides, past lecture slides, old quizzes/exams, advice
- Tutoring: <http://tutoring.gatech.edu/tutoring>
- PLUS sessions: <http://tutoring.gatech.edu/plus-sessions>
- Math Lab: <http://tutoring.gatech.edu/drop-tutoring-help-desks>

KORK ERKER ADAM ADA

- Counseling center: <https://counseling.gatech.edu>
- You can do it!

Chapter 2

System of Linear Equations: Geometry

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Where are we?

In Chapter 1 we learned to solve any system of linear equations in any number of variables. The answer is row reduction, which gives an algebraic solution. In Chapter 2 we put some geometry behind the algebra. It is the geometry that gives us intuition and deeper meaning. There are three main points:

Sec 2.3: $Ax = b$ is consistent $\Leftrightarrow b$ is in the span of the columns of A.

Sec 2.4: The solutions to $Ax = b$ are parallel to the solutions to $Ax = 0$.

Sec 2.9: The dim's of $\{b : Ax = b$ is consistent} and $\{$ solutions to $Ax = b\}$ add up to the number of columns of A.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Section 2.4

Solution Sets

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Outline

• Understand the geometric relationship between the solutions to $Ax = b$ and $Ax = 0$

KO KKOKKEKKEK E DAG

- Understand the relationship between solutions to $Ax = b$ and spans
- Learn the parametric vector form for solutions to $Ax = b$

Homogeneous systems

Solving $Ax = b$ is easiest when $b = 0$. Such equations are called homogeneous.

Homogenous systems are always consistent. Why?

When does $Ax = 0$ have a nonzero/nontrivial solution?

If there are k -free variables and n total variables, then the solution is a k-dimensional plane through the origin in \mathbb{R}^n . In particular it is a span.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Homogeneous case

Solve the matrix equation $Ax = 0$ where

$$
A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

We already know the parametric form:

$$
x_1 = 8x_3 + 7x_4 \n x_2 = -4x_3 - 3x_4 \n x_3 = x_3
$$
 (free)
\n
$$
x_4 = x_4
$$
 (free)

We can also write this in parametric vector form:

$$
x_3 \left(\begin{array}{c} 8 \\ -4 \\ 1 \\ 0 \end{array} \right) + x_4 \left(\begin{array}{c} 7 \\ -3 \\ 0 \\ 1 \end{array} \right)
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Or we can write the solution as a span: $\text{Span}\{(8, -4, 1, 0), (7, -3, 0, 1)\}.$

Homogeneous case

Find the parametric vector form of the solution to $Ax = 0$ where

$$
A = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Variables, equations, and dimension

Nonhomogeneous Systems

Suppose $Ax = b$ and $b \neq 0$.

As before, we can find the parametric vector form for the solution in terms of free variables.

What is the difference?

Nonhomogeneous case

Find the parametric vector form of the solution to $Ax = b$ where:

$$
(A|b) = \begin{pmatrix} 1 & 2 & 0 & -1 & 3 \\ -2 & -3 & 4 & 5 & 2 \\ 2 & 4 & 0 & -2 & 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -8 & -7 & -13 \\ 0 & 1 & 4 & 3 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

We already know the parametric form:

$$
x_1 = -13 + 8x_3 + 7x_4
$$

\n
$$
x_2 = 8 - 4x_3 - 3x_4
$$

\n
$$
x_3 = x_3
$$
 (free)
\n
$$
x_4 = x_4
$$
 (free)

We can also write this in parametric vector form:

$$
\left(\begin{array}{c} -13\\8\\0\\0 \end{array}\right) + x_3 \left(\begin{array}{c} 8\\-4\\1\\0 \end{array}\right) + x_4 \left(\begin{array}{c} 7\\-3\\0\\1 \end{array}\right)
$$

This is a translate of a span: $(-13, 8, 0, 0) + \text{Span}\{(8, -4, 1, 0), (7, -3, 0, 1)\}.$

Nonhomogeneous case

Find the parametric vector form for the solution to $Ax = (9)$ where

 $A = (1 \ 1 \ 1 \ 1)$

 $(1 \ 1 \ 1 \ 1 \ 9)$

KO KKOKKEKKEK E DAG

Homogeneous vs. Nonhomogeneous Systems

Key realization. Set of solutions to $Ax = b$ obtained by taking one solution and adding all possible solutions to $Ax = 0$.

 $Ax = 0$ solutions $\leadsto Ax = b$ solutions

 $x_kv_k + \cdots + x_nv_n \rightsquigarrow p + x_kv_k + \cdots + x_nv_n$

So: set of solutions to $Ax = b$ is parallel to the set of solutions to $Ax = 0$. It is a translate of a plane through the origin. (Again, we are using geometry to understand algebra!)

So by understanding $Ax = 0$ we gain understanding of $Ax = b$ for all b. This gives structure to the set of equations $Ax = b$ for all b.

KOD KAD KED KED E VOOR

Nonhomogeneous case

Find the parametric vector forms for
$$
\begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

K ロ X イロ X K ミ X K ミ X ミ X D V Q (V)

$$
\text{...and } \left(\begin{array}{cc} 1 & -3 \\ 2 & -6 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 3 \\ 6 \end{array}\right).
$$

Solving matrix equations

The matrix equation

$$
\left(\begin{array}{ccc}0&6&8\\1/2&0&0\\0&1/2&0\end{array}\right)\left(\begin{array}{c}f\\s\\t\end{array}\right)=\left(\begin{array}{c}0\\0\\0\end{array}\right)
$$

has only the trivial solution.

What does this mean about the matrix equation

$$
\left(\begin{array}{ccc}0&6&8\\1/2&0&0\\0&1/2&0\end{array}\right)\left(\begin{array}{c}f\\s\\t\end{array}\right)=\left(\begin{array}{c}20\\1\\1\end{array}\right)?
$$

KO K K Ø K K E K K E K V K K K K K K K K K

What does this mean about rabbits?

Two different things

Suppose A is an $m \times n$ matrix. Notice that if $Ax = b$ is a matrix equation then x is in \mathbb{R}^n and b is in \mathbb{R}^m . There are two different problems to solve.

1. If we are given a specific b, then we can solve $Ax = b$. This means we find all x in \mathbb{R}^n so that $Ax = b$. We do this by row reducing, taking free variables for the columns without pivots, and writing the (parametric) vector form for the solution.

2. We can also ask for which b in \mathbb{R}^m does $Ax=b$ have a solution? The answer is: when b is in the span of the columns of A. So the answer is "all b in \mathbb{R}^{m} " exactly when the span of the columns is \mathbb{R}^{m} which is exactly when A has m pivots.

If you go back to the \triangleright [Demo](http://textbooks.math.gatech.edu/ila/demos/Axequalsb.html?x=-3,0&mat=1,-3:2,-6&lock=true&closed=true) from earlier in this section, the first question is happening on the left and the second question on the right.

Example. Say that $A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix}$. We can ask: (1) Does $Ax = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ have a solution? and (2) For which b does $Ax = b$ have a solution?

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Summary of Section 2.4

- The solutions to $Ax = 0$ form a plane through the origin (span)
- The solutions to $Ax = b$ form a plane not through the origin
- The set of solutions to $Ax = b$ is parallel to the one for $Ax = 0$
- In either case we can write the parametric vector form. The parametric vector form for the solution to $Ax = 0$ is obtained from the one for $Ax = b$ by deleting the constant vector. And conversely the parametric vector form for $Ax = b$ is obtained from the one for $Ax = 0$ by adding a constant vector. This vector translates the solution set.

KORK ERKER ADAM ADA

Typical exam questions

- \bullet Suppose that the set of solutions to $Ax=b$ is the plane $z=1$ in $\mathbb{R}^3.$ What is the set of solutions to $Ax = 0$?
- $\bullet\,$ Suppose that the set of solutions to $Ax=0$ is the line $y=x$ in $\mathbb{R}^2.$ Is it possible that there is a b so that the set of solutions to $Ax = b$ is the line $x + y = 1?$
- \bullet Suppose that the set of solutions to $Ax=b$ is the plane $x+y=1$ in $\mathbb{R}^3.$ Is is possible that there is a b so that the set of solutions to $Ax = b$ is the z -axis?
- Suppose that the set of solutions to $Ax = 0$ is the plane $x + 2y 3z = 0$ in \mathbb{R}^3 and that the vector $(1,3,5)$ is a solution to $Ax=b.$ Find one other solution to $Ax = b$. Find all of them.
- $\bullet\,$ Is there a 2×2 matrix so that the set of solutions to $Ax=(\frac{1}{2})$ is the line $y = x + 1$? If so, find such an A. If not, explain why not.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Section 2.5

Linear Independence

Section 2.5 Outline

• Understand what is means for a set of vectors to be linearly independent

KO K K Ø K K E K K E K V K K K K K K K K K

• Understand how to check if a set of vectors is linearly independent

The idea of linear independence: a collection of vectors v_1, \ldots, v_k is linearly independent if they are all pointing in truly different directions. This means that none of the v_i is in the span of the others.

For example, $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$ are linearly independent.

Also, $(1, 0, 0)$, $(0, 1, 0)$ and $(1, 1, 0)$ are linearly dependent.

What is this good for? A basic question we can ask about solving linear equations is: What is the smallest number of vectors needed in the parametric solution to a linear system? We need linear independence to answer this question. See the last slide in this section.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

A set of vectors $\{v_1,\ldots,v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

 $x_1v_1 + x_2v_2 + \cdots + x_kv_k = 0$

has only the trivial solution. It is linearly dependent otherwise.

So, linearly dependent means there are x_1, x_2, \ldots, x_k not all zero so that

 $x_1v_1 + x_2v_2 + \cdots + x_kv_k = 0$

KO K K Ø K K E K K E K V K K K K K K K K K

This is a linear dependence relation.

A set of vectors $\{v_1,\ldots,v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

 $x_1v_1 + x_2v_2 + \cdots + x_kv_k = 0$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

has only the trivial solution.

Fact. The columns of A are linearly independent $\Leftrightarrow Ax = 0$ has only the trivial solution. \Leftrightarrow A has a pivot in each column

Why?

$$
\text{ls} \left\{ \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \\ 2 \end{array} \right), \left(\begin{array}{c} 3 \\ 1 \\ 4 \end{array} \right) \right\} \text{ linearly independent?}
$$

$$
\text{Is } \left\{ \left(\begin{array}{c} 1 \\ 1 \\ -2 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \\ 2 \end{array} \right), \left(\begin{array}{c} 3 \\ 1 \\ 4 \end{array} \right) \right\} \text{ linearly independent?}
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @